タグ「一つ」の検索結果

3ページ目:全61問中21問~30問を表示)
札幌医科大学 公立 札幌医科大学 2015年 第2問
$p$を$0 \leqq p \leqq 1$をみたす実数とする.$1$個の白玉と$3$個の赤玉が入っている袋があり,この袋から$1$個の玉を取り出して,取り出した玉に新たに白か赤の玉を$1$個加えて袋に戻す試行を行う.ただし,この試行の際に加えられる新たな玉の色は
\begin{itemize}
確率$p$で取り出した玉と同じ色
確率$1-p$で取り出した玉と異なる色
\end{itemize}
とする.

例えば,$p=1$の場合,第$1$回目の試行において赤玉が取り出されると,取り出した赤玉に加えてもう一つ赤玉を袋に戻す.そして第$1$回目の試行が終わったときには,袋の中に$1$個の白玉と$4$個の赤玉が入っている.
第$n$回目の試行で白玉が取り出される確率を$q_n$とする.

(1)第$n$回目の試行で新たに加えられた玉が白玉であり,かつこの白玉が$n+1$回目の試行で取り出される確率を$n,\ p,\ q_n$を用いて表せ.
(2)$q_{n+1}$を$n,\ p,\ q_n$を用いて表せ.ただし$n+1$回目の試行において,$n$回目に入れた玉を取り出さないという条件の下で,$n+1$回目に白玉を取り出す条件つき確率が$q_n$と等しいことを用いてよい.
(3)$\displaystyle r_n=q_n-\frac{1}{2}$とおくとき,$r_{n+1}$を$n,\ p,\ r_n$を用いて表せ.
(4)$p=0$,$\displaystyle p=\frac{1}{2}$,$p=1$のときの$q_n$をそれぞれ$n$を用いて表せ.
宮城大学 公立 宮城大学 2015年 第3問
ともに目盛りのない$3 \, \ell$の容器$\mathrm{A}$と$5 \, \ell$の容器$\mathrm{B}$を一つずつ用いるとき,次の問いに答えなさい.

(1)$4 \, \ell$の水を量る手順を,次の例にならって説明しなさい.
(例)$\mathrm{A}$に$3 \, \ell$,$\mathrm{B}$に$0 \, \ell$の水が入っている状態を$\mathrm{AB}(3,\ 0)$で表す.また,はじめに$\mathrm{A}$に$3 \, \ell$の水を入れ,次に,$\mathrm{B}$に$5 \, \ell$の水を入れていくとき,
\[ \mathrm{AB}(0,\ 0) \to \mathrm{AB}(3,\ 0) \to \mathrm{AB}(3,\ 5) \]
のように表すものとする.
(2)$n \, \ell$以上の水が量れることを,数学的帰納法を用いて証明しなさい.ただし,$n$は$9$以上の自然数とする.
兵庫県立大学 公立 兵庫県立大学 2015年 第1問
次の問に答えなさい.

(1)$2$つの解$\alpha=1+\sqrt{2}$,$\beta=\sqrt{3}$をもつ$2$次方程式を一つ求めなさい.
(2)ある$2$次方程式$f(x)=0$の解の$1$つが$\alpha=s+t \sqrt{2}$であった.このとき,もう一つの解$\beta$に関する次の議論は正しくないことを説明しなさい.
\begin{jituwaku}
$\alpha=s+t \sqrt{2}$から簡単な計算により,$\alpha^2-2s \alpha+s^2-2t^2=0$を得る.これは,$\alpha$が$x^2-2sx+s^2-2t^2=0$の解であることを意味することから,$f(x)=x^2-2sx+s^2-2t^2$がわかる.よって,$f(x)=0$のもう一つの解$\beta$は$x^2-2sx+s^2-2t^2=0$を解いて$\beta=s-t \sqrt{2}$と求まる.
\end{jituwaku}
(3)$2$次方程式$x^2+px+q=0$において,$p,\ q$は有理数とする.$\alpha=1+\sqrt{2}$がこの方程式の解であるとき,もう一方の解$\beta$を求めなさい.
滋賀医科大学 国立 滋賀医科大学 2014年 第1問
さいころを$n$回($n \geqq 1$)投げて,出た目の最小公倍数を$l$とするとき,次の確率を求めよ.

(1)$2$と$3$の少なくとも一方が一度も出ない確率
(2)$l$が素数となる確率
(3)$l$が出た目の一つに等しい確率
山口大学 国立 山口大学 2014年 第2問
座標平面において,方程式$\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1$が表す双曲線$C$と点$\mathrm{P}(a,\ 0)$がある.ただし,$a>3$とする.点$\mathrm{P}$を通り$y$軸に平行な直線と双曲線$C$との交点の一つである点$\mathrm{Q}(a,\ b)$をとる.ただし,$b>0$とする.さらに,点$\mathrm{Q}$における双曲線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}(c,\ 0)$とする.このとき,次の問いに答えなさい.

(1)$a$を用いて$b$を表しなさい.
(2)$a$を用いて接線$\ell$の方程式を表しなさい.
(3)$a$を用いて$c$を表しなさい.
(4)極限値$\displaystyle \lim_{a \to \infty} \frac{\mathrm{PQ}}{\mathrm{PR}}$を求めなさい.
吉備国際大学 私立 吉備国際大学 2014年 第2問
正二十面体のサイコロを考える.各面に$1$から$20$までの整数が一つずつ書いてある.

(1)このサイコロを$1$回ふるとき,出る目の数が素数である確率を求めよ.
(2)このサイコロを$1$回ふるとき,出る目の数が$3$の倍数である確率を求めよ.
(3)このようなサイコロを$2$回ふるとき,出る目の数の積が$3$の倍数であって$9$の倍数でない確率を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第2問
次の$[ ]$に当てはまるものを下記の$①$~$④$のうちから一つ選び,その番号をマークせよ.ただし,同じものをくり返し選んでもよい.

$a,\ b,\ c$を定数とし,$a \neq 0$とする.条件$p,\ q,\ r,\ s,\ t$を次のように定める.
$p:$方程式$ax^2+bx+c=0$は異なる$2$つの実数解をもつ.
$q:$座標平面で関数$y=ax^2+bx+c$のグラフは$x$軸と異なる$2$点で交わる.
$r:ac<0$である.
$s:b^2-ac>0$である.
$t:(a+b+c)(a-b+c)<0$である.

このとき,$q$は$p$の$[ケ]$.$r$は$q$の$[コ]$.$s$は$p$の$[サ]$.$t$は$q$の$[シ]$.
\[ \begin{array}{ll}
① \text{必要十分条件である} & ② \text{必要条件であるが,十分条件でない} \\
③ \text{十分条件であるが,必要条件でない} & ④ \text{必要条件でも十分条件でもない}
\end{array} \]
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
スポンサーリンク

「一つ」とは・・・

 まだこのタグの説明は執筆されていません。