タグ「ラジアン」の検索結果

1ページ目:全7問中1問~10問を表示)
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第7問
$\triangle \mathrm{ABC}$の$3$つの角$A,\ B,\ C$に対して,$\sin A:\sin B:\sin C=3:5:7$であるとき,$\tan A=[テ]$であり,角$C$の大きさをラジアンで求めると$C=[ト]$である.
千葉大学 国立 千葉大学 2013年 第8問
$r$を$1$より大きい実数とする.半径$1$の円$C$の周上に点$\mathrm{Q}$をとる.最初に円$C$の中心$\mathrm{P}$は座標平面の$(0,\ 1)$,点$\mathrm{Q}$は$(0,\ 2)$にあるものとし,円$C$が$x$軸に接しながら$x$軸の正の方向にすべることなく転がっていく.角$\theta$ラジアンだけ回転したとき,半直線$\mathrm{PQ}$上に$\mathrm{PR}=r$となる点$\mathrm{R}$をとる.$\theta$を$0$から$2\pi$まで動かしたときの$\mathrm{R}$の軌跡を考える.

(1)$\alpha,\ \beta$は$0 \leqq \alpha<\beta \leqq 2\pi$をみたし,$\theta=\alpha$のときの$\mathrm{R}$の座標と$\theta=\beta$のときの$\mathrm{R}$の座標とが一致するものとする.$\displaystyle t=\frac{\beta-\alpha}{2}$とおくとき,$r$を$t$を用いて表せ.
(2)(1)において,$\theta$を$\alpha$から$\beta$まで動かしたときの$\mathrm{R}$の軌跡によって囲まれた図形の面積を$S$とする.$S$を$t$を用いて表せ.
(3)$\displaystyle \lim_{r \to \infty} \frac{S}{r^2}$を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第7問
原点$\mathrm{O}$を中心とする半径$1$の円において扇形$\mathrm{OAB}$を考える.ただし,点$\mathrm{A}$は$(1,\ 0)$であり,点$\mathrm{B}$は第$1$象限にあるとする.扇形$\mathrm{OAB}$の中心角は,$x$ラジアン$\displaystyle \left( 0<x<\frac{\pi}{2} \right)$であるとする.点$\mathrm{B}$から$\mathrm{OA}$におろした垂線を$\mathrm{BC}$,点$\mathrm{A}$における円の接線が,点$\mathrm{O}$と点$\mathrm{B}$を通る直線と交わる点を$\mathrm{D}$とする.以下の問いに答えよ.

(1)三角形$\mathrm{ODA}$,三角形$\mathrm{OAB}$,扇形$\mathrm{OAB}$の面積を,$x$を用いてそれぞれ表せ.
(2)不等式$\displaystyle \cos x<\frac{\sin x}{x}<1$が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to +0}\frac{\sin x}{x}=1$を示せ.ただし,$x \to +0$は,$x$が正の値をとりながら限りなく$0$に近づくことを表す.
山形大学 国立 山形大学 2011年 第3問
座標平面上で原点を中心とする角$\theta \ $(ラジアン)の回転移動を表す行列を$R(\theta)$とする.また,$\displaystyle 0<\theta<\pi \ \left( \theta \neq \frac{\pi}{2} \right)$となる$\theta$に対し,直線$y=(\tan \theta)x$に関する対称移動を表す行列を$A(\theta)$とする.このとき,次の問に答えよ.

(1)行列$X=R(\theta)^{-1}A(\theta)R(\theta)$を求めよ.また,$s$に対して$XR(s)X=R(t)$を満たす$t$を求めよ.ただし,$R(\theta)^{-1}$は$R(\theta)$の逆行列である.
(2)$\displaystyle 0<\alpha<\pi,\ 0<\beta<\pi \ \left( \alpha,\ \beta \neq \frac{\pi}{2} \right)$のとき,$A(\alpha) A(\beta)$を求めよ.
(3)$\displaystyle 0<\beta<\frac{\pi}{2}<\alpha<\pi$のとき,$A(\alpha)A(\beta)=A(\beta)A(\alpha)$となるための必要十分条件を$\alpha,\ \beta$を用いて表せ.
(4)$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$で,点$(\tan \alpha,\ \tan \beta)$が曲線$\displaystyle y=\frac{3x-1}{x+3}$上にあるとき,次の\maru{1},\maru{2}に答えよ.

\mon[\maru{1}] $\tan (\alpha-\beta)$の値を求めよ.
\mon[\maru{2}] $A(\alpha)A(\beta)$を求めよ.
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
スポンサーリンク

「ラジアン」とは・・・

 まだこのタグの説明は執筆されていません。