タグ「ミム」の検索結果

1ページ目:全5問中1問~10問を表示)
西南学院大学 私立 西南学院大学 2015年 第4問
$p$を定数とする.等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$が
\[ S_n=pn^2-8pn+p+4 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表される.このとき,$p=[ホマ]$である.また,$\{a_n\}$の初項は$[ミム]$,公差は$[メモ]$であり,$S_n$は$n=[ヤ]$のとき最大となる.
西南学院大学 私立 西南学院大学 2014年 第4問
三角形$\mathrm{ABC}$に内接する円$\mathrm{O}$がある.円$\mathrm{O}$と$\mathrm{BC}$との接点を$\mathrm{H}$,円$\mathrm{O}$と$\mathrm{AC}$との接点を$\mathrm{I}$とする.$\mathrm{AB}=8$,$\mathrm{BC}=9$,$\mathrm{AC}=5$のとき,以下の問に答えよ.

(1)円$\mathrm{O}$の半径は,$\displaystyle \frac{[ノ] \sqrt{[ハヒ]}}{[フヘ]}$である.
(2)円$\mathrm{O}$の中心と$\mathrm{B}$との距離は,$\displaystyle \frac{[ホマ] \sqrt{[ミム]}}{[フヘ]}$である.
(3)$\mathrm{AI}=[メ]$である.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
東京理科大学 私立 東京理科大学 2012年 第3問
$3$次方程式$x^3-6x^2+ax+a=0$が異なる$3$つの実数解$u,\ v,\ w$をもち,
\[ (u-1)^3+(v-2)^3+(w-3)^2=0 \]
が成り立っているとする.ただし$a$は実数とする.このとき$u,\ v,\ w$の間に成り立つ関係式と$a$の値は次の$3$通りである.

(1)$\displaystyle w=[ノ],\ u+v=[ハ],\ a=\frac{[ヒフ]}{[ヘ]}$

(2)$\displaystyle v=[ホ],\ u+w=[マ],\ a=\frac{[ミム]}{[メ]}$

(3)$\displaystyle u=[モ],\ v+w=[ヤ],\ a=\frac{[ユ]}{[ヨ]}$

ただし,必要ならば,一般に$3$次方程式$ax^3+bx^2+cx+d=0$の$3$つの解を$\alpha$,$\beta$,$\gamma$とすると,
\[ \alpha+\beta+\gamma=-\frac{b}{a},\quad \alpha\beta+\beta\gamma+\gamma\alpha=\frac{c}{a},\quad \alpha\beta\gamma=-\frac{d}{a} \]
が成り立つことを用いてもよい.
西南学院大学 私立 西南学院大学 2011年 第4問
$xy$平面上に次に示す,$C$と$\ell$がある.
\[ \begin{array}{l}
C:y=|x^2-4| \\
\ell:y=2x+4
\end{array} \]
このとき以下の問に答えよ.

(1)$C$と$\ell$の交点は$x$座標の小さい順に
\[ ([ネノ],\ [ハ])$,$([ヒ],\ [フ])$,$([ヘ],\ [ホマ]) \]
である.
(2)$C$と$\ell$で囲まれる図形の面積は$\displaystyle \frac{[ミム]}{[メ]}$である.
スポンサーリンク

「ミム」とは・・・

 まだこのタグの説明は執筆されていません。