タグ「ピタゴラス」の検索結果

1ページ目:全4問中1問~10問を表示)
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
スポンサーリンク

「ピタゴラス」とは・・・

 まだこのタグの説明は執筆されていません。