タグ「ヒント」の検索結果

1ページ目:全4問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)円$x^2+y^2-6x+12y+25=0$を$C_1$とし,中心が原点で,円$C_1$に外接する円を$C_2$とする.このとき円$C_2$の半径は$[ケ]$である.また$2$つの円$C_1$,$C_2$の共有点の座標は$[コ]$である.
(2)不等式$3^{2x}+1<3^{x+2}+3^{x-2}$を解くと,$[サ]<x<[シ]$である.
(3)自然数$n$に対して$m \leqq \log_2 n<m+1$を満たす整数$m$を$a_n$で表すことにする.このとき$a_{2016}=[ス]$である.また,自然数$k$に対して$a_n=k$を満たす$n$は全部で$[セ]$個あり,そのような$n$のうちで最大のものは$n=[ソ]$である.さらに$\displaystyle \sum_{n=1}^{2016}a_n=[タ]$である.
(ヒント:$2^{10}=1024$)
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
次の問いに答えよ.

(1)計算せよ.
\[ \sum_{k=1}^{10} (2k-1)^2=\kakkofour{$101$}{$102$}{$103$}{$104$} \]
(2)計算せよ.
\[ \sum_{k=1}^{20} (-1)^{k-1}k^2=\kakkofour{$105$}{$106$}{$107$}{$108$} \]
(3)$1$から$20$までの数を$2$つの数列$a_1,\ a_2,\ \cdots,\ a_{10}$と$b_1,\ b_2,\ \cdots,\ b_{10}$に分ける.
\[ S=\sum_{k=1}^{10} a_kb_k \]
と定義し,分け方を種々考え,$S$の最小値と最大値を求めると,それぞれ
\[ [$109$][$110$][$111$],\quad \kakkofour{$112$}{$113$}{$114$}{$115$} \]
となる.(ヒント:増加数列や減少数列を考える.)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)座標平面上の$3$点$\mathrm{A}(4,\ 8)$,$\mathrm{O}(0,\ 0)$,$\mathrm{C}(12,\ 0)$を頂点とする三角形$\triangle \mathrm{AOC}$に接する正方形を,一辺が$\mathrm{OC}$上にあり,$2$頂点が三角形の他の辺上にあるようにとる.このとき正方形の一辺の長さは
\[ \frac{[$1$][$2$]}{[$3$][$4$]} \]
である.
(2)$u,\ v$を$0<u<2$,$0<v$なる実数とするとき
\[ (u-v)^2+\left( \sqrt{4-u^2}-\frac{18}{v} \right)^2 \]

\[ u=\sqrt{[$5$]},\quad v=[$6$] \sqrt{[$7$]} \]
のとき,最小値$[$8$][$9$]$をとる.(ヒント:平面上の$2$点の距離を考える.)
東京理科大学 私立 東京理科大学 2012年 第1問
$[ ]$内のカタカナにあてはまる$0$から$9$までの数字を求めよ.

(1)$k$を自然数とすると,不等式
\[ k>\frac{\sqrt{k}+\sqrt{k-1}}{2} \]
が成立する.この不等式の右辺の逆数は$\displaystyle [ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right)$であるから,不等式
\[ \frac{1}{k}<[ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right) \]
を得る.この不等式がすべての自然数$k$に対して成立することより,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{k}=[ウ] \]
であることがわかる.
(2)自然数$n$に対し,
\[ a_n=\sum_{m=1}^{\infty} \frac{1}{m(m+n+1)},\quad s_n=\sum_{k=1}^n \frac{1}{k} \]
と定める.

(i) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{n(n+1)}$を求めよ.

(ii) $\displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n}-\frac{1}{n+1} \right) s_{n+1}$を求めよ.

(ヒント:$n \geqq 2$であるような各自然数$n$に対して$s_{n+1}-s_n$を考えることにより,$(ⅰ)$の結果が使える形に変形せよ.)
(iii) $n$を自然数とする.また,$p$は自然数で,等式
\[ \sum_{m=1}^{\infty} \left( \frac{1}{m}-\frac{1}{m+n+1} \right)=s_p \]
が成立しているとする.このとき,$p$を$n$の$1$次式の形に表せ.
\mon[$\tokeishi$] $n$を自然数とし,$p$は$(ⅲ)$における通りであるとする.また,$q$は自然数で,等式
\[ a_n=\frac{s_p}{q} \]
が成立しているとする.このとき,$q$を$n$の$1$次式の形に表せ.
\mon[$\tokeigo$] $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n}$を求めよ.
スポンサーリンク

「ヒント」とは・・・

 まだこのタグの説明は執筆されていません。