タグ「ナニ」の検索結果

2ページ目:全16問中11問~20問を表示)
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
西南学院大学 私立 西南学院大学 2012年 第3問
$a$は実数とする.$\displaystyle \int_a^x f(t) \, dt=3x^3-5x^2-4x+4$のとき,以下の問に答えよ.

(1)$f(x)=[サ]x^2-[シス]x-[セ]$である.

(2)$a$の値は小さい順に$[ソタ]$,$\displaystyle \frac{[チ]}{[ツ]}$,$[テ]$である.
(3)$\displaystyle b \int_{x-1}^{x+1}f(t) \, dt+cx=xf^\prime(x)-2$を満たす$b,\ c$は,$b=[ト]$,$c=[ナニ]$である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
青山学院大学 私立 青山学院大学 2012年 第2問
次の定積分を求めよ.

(1)$\displaystyle \int_{\frac{1}{2}}^2 x \log x \, dx=\frac{[コサ]}{[シ]} \log [ス]-\frac{[セソ]}{[タチ]}$

(2)$\displaystyle \int_0^2 (x^2+2x+3) \log (x+1) \, dx=[ツテ] \log [ト]-\frac{[ナニ]}{[ヌ]}$
西南学院大学 私立 西南学院大学 2011年 第2問
$\mathrm{AB}=3$,$\mathrm{AC}=2$,$\angle \mathrm{BAC}=60^\circ$の三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{P}$,$\angle \mathrm{BAC}$の外角の二等分線と辺$\mathrm{BC}$の延長との交点を$\mathrm{Q}$とし,$\angle \mathrm{APQ}=\theta$とするとき,以下の問に答えよ.

(1)$\mathrm{BC}=\sqrt{[サ]}$である.
(2)$\displaystyle \mathrm{AP}=\frac{[シ] \sqrt{[ス]}}{[セ]}$,$\displaystyle \mathrm{PQ}=\frac{[ソタ] \sqrt{[チ]}}{[ツ]}$であるから,$\displaystyle \cos \theta=\frac{\sqrt{[テト]}}{[ナニ]}$である.
西南学院大学 私立 西南学院大学 2010年 第3問
次の問いに答えよ.

(1)$0^\circ \leqq \theta \leqq 90^\circ$のとき,
$4 \sin^2 \theta+2(1+\sqrt{3}) \cos \theta-(4+\sqrt{3})=0$を満たしている.このとき,$\theta=[テト]^\circ$,$[ナニ]^\circ$である.ただし,$[テト]^\circ<[ナニ]^\circ$とする.
(2)$0^\circ \leqq \theta \leqq 90^\circ$のとき,
$\displaystyle \tan \theta \left( \frac{\sin^2 \theta}{\cos^2 \theta}-\frac{\sin \theta}{\cos \theta}-3 \right)+3=0$を満たしている.このとき,$\theta=[ヌネ]^\circ$,$[ノハ]^\circ$である.ただし,$[ヌネ]^\circ<[ノハ]^\circ$とする.
スポンサーリンク

「ナニ」とは・・・

 まだこのタグの説明は執筆されていません。