タグ「テーブル」の検索結果

1ページ目:全9問中1問~10問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{2}{3}$のとき,$\sin \theta \cos \theta=[ア]$,$\sin^3 \theta+\cos^3 \theta=[イ]$である.
(2)高さが$1$の円錐を,頂点から$a$の距離で底面に平行な面で上下$2$つに切断する.体積が$2$等分されるのは,$a=[ウ]$のときである.
(3)$\displaystyle \sum_{k=5}^{20}(2k-7)$の値は$[エ]$である.
(4)多項式$(x-1)(x-2)(x-3)$を$x-4$で割った余りを$A$,$(x-2)(x-3)(x-4)$を$x-1$で割った余りを$B$,$(x-3)(x-4)(x-1)$を$x-2$で割った余りを$C$とすると,$A+B+C=[オ]$である.
(5)定積分$\displaystyle \int_{-2}^5 |x^2-9| \, dx$の値は$[カ]$である.
(6)$5$人の大人と$3$人の子どもが,円形のテーブルの周りに座る.子ども同士が隣り合わない座り方は全部で$[キ]$通りある.ただし,回転して一致するものは同じ座り方とみなす.
(7)半透明のガラス板がある.光がガラス板$1$枚を通ると,その強さが$8$割に減る.光の強さが当初の$1$割未満となるのは,ガラス板を$[ク]$枚以上重ねたときである.ただし,必要であれば$\log_{10}2=0.3010$を用いよ.
(8)$1$周$300 \, \mathrm{m}$の池の周りを,$\mathrm{A}$は徒歩で,$\mathrm{B}$は自転車で,同じ地点から同時にスタートし,同じ方向に回る.自転車が徒歩の$5$倍の速さで進むとき,$\mathrm{B}$が池を$1$周したあと,$\mathrm{A}$を初めて追い抜く地点は,スタート地点から進行方向に$[ケ] \, \mathrm{m}$進んだ地点である.
弘前大学 国立 弘前大学 2015年 第2問
男子$4$人と女子$4$人を円形のテーブルのまわりに無作為に配置する.次の問いに答えよ.

(1)男女が交互に並ぶ配置になる確率を求めよ.
(2)この配置を$3$回行うとき,男女が交互に並ぶ配置になる回数が$1$回または$2$回になる確率を求めよ.
名城大学 私立 名城大学 2014年 第3問
$5$人が座れる円形のテーブルが$2$つあり,$\mathrm{A}$君,$\mathrm{B}$子さん,$\mathrm{C}$君を含む$10$人が抽選で座る.$\mathrm{A}$君,$\mathrm{B}$子さん,$\mathrm{C}$君およびその後に他の$7$人がこの順でくじを引くとき,次の問に答えよ.

(1)$\mathrm{A}$君が$\mathrm{B}$子さんと同じテーブルに座れる確率を求めよ.
(2)$\mathrm{A}$君が$\mathrm{B}$子さんと隣り合わせに座れる確率を求めよ.
(3)$\mathrm{A}$君と$\mathrm{B}$子さんが同じテーブルに,$\mathrm{C}$君は別のテーブルに座る確率を求めよ.
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
高崎経済大学 公立 高崎経済大学 2014年 第2問
あるクラスに男子$4$名($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$),女子$5$名($\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$),計$9$名の生徒がいる.以下の各問に答えよ.

このクラスでは,下図のように先生$1$名を含めて$10$名で$1$つの丸いテーブルを囲んで座っている.このとき,以下の並び方について答えよ.
(図は省略)
(1)先生の右隣りに男子生徒が座る並び方は何通りあるか.
(2)先生の両隣りに男子生徒が座る並び方は何通りあるか.
(3)女子生徒同士が隣り合わないように座る並び方は何通りあるか.
いま,このクラスで$4$名の発表者を選ぶことになった.このとき,以下の発表者の選び方について答えよ.
(4)生徒全員からの発表者の選び方は何通りあるか.
(5)男子生徒から$2$名かつ女子生徒から$2$名の発表者の選び方は何通りあるか.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
東北工業大学 私立 東北工業大学 2012年 第2問
次の問いに答えよ.

(1)先生$2$人と生徒$4$人の合計$6$人が円形のテーブルに向かって座るとき,先生$2$人が隣り合うような座り方は全部で$[][]$通りある.
(2)赤球と白球が$3$個ずつ入っている袋から同時に$3$個の球を取りだすとき,赤球$2$個,白球$1$個である確率は$\displaystyle \frac{[][]}{20}$である.
(3)$2$つのベクトルを$\overrightarrow{a}=(\sqrt{3},\ 7)$,$\overrightarrow{b}=(-\sqrt{3},\ 1)$とし,$t$は実数とする.$\overrightarrow{a}+t \overrightarrow{b}$の大きさは$t=-[][]$のとき最小となり,最小値は$[][] \sqrt{3}$である.
(4)$n$を自然数とする.初項が$-2$,公差が$\displaystyle \frac{1}{12}$の等差数列の初項から第$n$項までの和を$S_n$とおくとき,$S_{24}=-[][]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)円$x^2+y^2=30$上の点$\mathrm{P}(5,\ \sqrt{5})$における接線の方程式は$[$1$]$である.
(2)$\displaystyle \frac{5x+3}{x^2+7x-18}=\frac{a}{x-2}+\frac{b}{x+9}$が$x$についての恒等式であるとき,$a=[$2$]$,$b=[$3$]$である.
(3)$\displaystyle \sin (\alpha+\beta)=\frac{3}{4},\ \sin (\alpha-\beta)=\frac{1}{4}$であるとき,$\sin \alpha \cos \beta$の値は$[$4$]$,$\cos \alpha \sin \beta$の値は$[$5$]$,$\sin^2 \alpha+\cos^2 \beta$の値は$[$6$]$である.
(4)$7$人が円形のテーブルに着席する方法は$[$7$]$通りある.
(5)さいころ$3$個を同時に投げるとき,そのうち同じ目が出るさいころが$2$個だけである確率は,$[$8$]$である.また,さいころ$4$個を同時に投げるとき,少なくとも$2$個のさいころが同じ目である確率は,$[$9$]$である.
(6)連立方程式
\[ \left\{ \begin{array}{l}
\sqrt{x}+2 \log_{10}y=3 \\
x-3 \log_{10}y^2=1 \phantom{e^{[ ]}}
\end{array} \right. \]
を満たす$x,\ y$の値は$x=[$10$]$,$y=[$11$]$である.
北星学園大学 私立 北星学園大学 2011年 第2問
$6$人座れる円形のテーブルが$2$つあり,ここに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人を含む$10$人が各テーブルに$5$人ずつ無作為に着席するものとする.ただし,それぞれのテーブルについて回転して同じになる座り方は同じとみなす.以下の問に答えよ.

(1)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルに座る座り方は何通りあるか.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルに座る確率を求めよ.
(3)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が同じテーブルで隣り合わせに座る確率を求めよ.
スポンサーリンク

「テーブル」とは・・・

 まだこのタグの説明は執筆されていません。