タグ「スセ」の検索結果

3ページ目:全34問中21問~30問を表示)
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
西南学院大学 私立 西南学院大学 2013年 第2問
$x$軸上を動く点$\mathrm{P}$があり,最初は原点にあるとする.$1$個のさいころを投げて,$1$か$2$の目が出たら点$\mathrm{P}$を正の方向に$2$だけ進め,その他の目が出たら負の方向に$1$だけ進めるものとする.以下の問に答えよ.

(1)さいころを$6$回投げたとき,$6$回目に点$\mathrm{P}$が原点に戻っている確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.

(2)さいころを$6$回投げたとき,$6$回目に点$\mathrm{P}$が原点に初めて戻っている確率は$\displaystyle \frac{[スセ]}{[コサシ]}$である.ただし,原点を通過した場合は,戻ったとはみなさない.
(3)さいころを$6$回投げたときに,点$\mathrm{P}$が原点に戻っているのが$2$度目である確率は$\displaystyle \frac{[ソタ]}{[チツ]}$である.ただし,原点を通過した場合は,戻ったとはみなさない.
西南学院大学 私立 西南学院大学 2013年 第2問
点$(x,\ y)$が,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(5,\ 0)$,$\mathrm{C}(2,\ 4)$を頂点とする三角形$\mathrm{ABC}$の内部および周上を動くとき,以下の問に答えよ.

(1)$3x+y$の最大値は$[ケコ]$となる.
(2)$x^2-2x+y^2+2y+2$の最小値は$\displaystyle \frac{[サシ]}{[スセ]}$となり,そのときの$x$の値は$\displaystyle \frac{[ソタ]}{[チツ]}$となる.
千葉工業大学 私立 千葉工業大学 2013年 第2問
次の各問に答えよ.

(1)関数$f(x)=8 \cos 2x+9 \tan^2 x$は,$\displaystyle f(x)=[アイ] \cos^2 x+\frac{[ウ]}{\cos^2 x}-[エオ]$と変形できる.$\displaystyle 0<x<\frac{\pi}{2}$において,$f(x)$は$\displaystyle x=\frac{[カ]}{[キ]} \pi$のとき最小値$[ク]$をとる.
(2)$x$の不等式$\log_a(x+1)^2>\log_a \{9(x+5)\}$の解は,$a>1$のとき,$[ケコ]<x<[サシ]$,$[スセ]<x$であり,$0<a<1$のときは,$[サシ]<x<[ソタ]$,$[ソタ]<x<[スセ]$である.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
近畿大学 私立 近畿大学 2013年 第3問
関数$f(x)$は次の等式を満たすものとする.
\[ \int_1^x f(t) \, dt=x^3+3x^2 \int_0^1 f(t) \, dt+x+k \]
ただし,$k$は定数とする.

(1)$f(x)=[ア]x^2-[イ]x+[ウ]$であり,$k=[エ]$である.関数$f(x)$は$x=[オ]$のとき最小値$[カキ]$をとる.
(2)関数$y=g(x)$のグラフと関数$y=f(x)$のグラフが,直線$x=3$に関して対称であるとすると
\[ g(x)=[ク]x^2-[ケコ]x+[サシ] \]
である.$y=g(x)$のグラフと$x$軸との共有点の$x$座標は
\[ \frac{[スセ] \pm \sqrt{[ソ]}}{[タ]} \]
であり,$y=g(x)$のグラフと$x$軸で囲まれた部分の面積は
\[ \frac{[チ] \sqrt{[ツ]}}{[テ]} \]
である.
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
九州産業大学 私立 九州産業大学 2013年 第3問
関数$f(x)=|x^2-2x-3|$と,曲線$C:y=f(x)$,直線$\ell:y=x+1$について考える.

(1)曲線$C$と$x$軸との交点の$x$座標は,小さい順に$[アイ]$,$[ウ]$である.
(2)関数$f(x)$の$-2 \leqq x \leqq 2$における最大値は$[エ]$であり,最小値は$[オ]$である.
(3)曲線$C$と$x$軸により囲まれた部分の面積は$\displaystyle \frac{[カキ]}{[ク]}$である.

(4)曲線$C$と直線$\ell$との交点の$x$座標は,小さい順に$[ケコ]$,$[サ]$,$[シ]$である.

(5)曲線$C$と直線$\ell$により囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[スセ]}{[ソ]}$である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
法政大学 私立 法政大学 2012年 第4問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.
$t$を正の定数とする.曲線$y=x^3-x$を$C$,$C$上の点$\mathrm{P}(t,\ t^3-t)$における接線を$\ell$とする.$\ell$の方程式は
\[ y=\left( [ア] t^2-[イ] \right) x-[ウ] t^3 \]
である.
$C$と$\ell$の,$\mathrm{P}$以外の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エオ] t$である.
$\mathrm{Q}$における$C$の接線を$m$とすると,$m$の方程式は
\[ y=\left( [カキ] t^2-[イ] \right)x+[クケ] t^3 \]
である.
$C$と$m$の,$\mathrm{Q}$以外の共有点を$\mathrm{R}$とすると,$\mathrm{R}$の$x$座標は$[コ] t$であり,
\[ \overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=18 \left( [サシ] t^6-[スセ] t^4+[ソ] t^2 \right) \]
となる.ここで,
\[ f(t)=\frac{\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}}{18t^6} \]
とおくと,$\displaystyle t=\frac{[タ] \sqrt{[チツ]}}{[チツ]}$のとき,$f(t)$は最小値$\displaystyle \frac{[テト]}{[ナ]}$をとる.
スポンサーリンク

「スセ」とは・・・

 まだこのタグの説明は執筆されていません。