タグ「シス」の検索結果

4ページ目:全37問中31問~40問を表示)
杏林大学 私立 杏林大学 2012年 第1問
$[カ]$,$[キ]$の解答はそれぞれの解答群の中から最も適当なものを$1$ずつ選べ.

袋の中に,$1$から$13$までの数字が書かれたカードが$1$枚ずつ入っている.この袋から$3$枚のカードを同時に取り出して,カードに書かれた数字を小さい方から順に$x,\ y,\ z$と定め,カードを袋に戻すという操作を行う.このような操作によって取りうるすべての整数の組$(x,\ y,\ z)$を,重複なく集めてできる集合
\[ U=\{ (x,\ y,\ z) \;|\; x,\ y,\ z \text{はカードを取り出して定められる数} \} \]
を全体集合と定める.また,集合$U$の部分集合$P,\ Q$をそれぞれ
$P=\{ (x,\ y,\ z) \;|\; z>x+y,\ (x,\ y,\ z) \in U \},$
$Q=\{ (x,\ y,\ z) \;|\; z<x+y,\ (x,\ y,\ z) \in U \}$
とする.

(1)集合$U$の要素の個数は$[アイウ]$である.また,$\overline{P} \cap \overline{Q}$に含まれる要素の個数は$[エオ]$である.
(2)集合$U$の要素$(x,\ y,\ z)$を
\[ \left\{ \begin{array}{l}
x^\prime=z-y \\
y^\prime=z-x \\
z^\prime=z
\end{array} \right. \]
で表わされる$(x^\prime,\ y^\prime,\ z^\prime)$に移す変換を$f$とする.このとき,集合$P$の要素$p$の変換$f$による像$p^\prime$は$p^\prime [カ]$を満たし,$p^\prime$の変換$f$による像$p^{\prime\prime}$は$p^{\prime\prime} [キ]$となる.
また,集合$Q$の要素の個数は$[クケコ]$である.

$[カ]$の解答群
\[ \begin{array}{lll}
① \in P \phantom{AAA} & ② \in Q & ③ \in \overline{P} \\
④ \in \overline{Q} & ⑤ \in \overline{P} \cap \overline{Q} \phantom{AAA} & ⑥ \not\in U
\end{array} \]
$[キ]$の解答群
\[ \begin{array}{llll}
① \in Q \phantom{AAA} & ② \in \overline{P} \phantom{AAA} & ③ \in \overline{Q} \phantom{AAA} & ④ \in \overline{P} \cap \overline{Q} \\
⑤ \not\in U & ⑥ =p & ④chi =p^\prime &
\end{array} \]
(3)$3$辺の長さがそれぞれ$x,\ y,\ z$である直角三角形を作ることができる$(x,\ y,\ z)$の組は$[サ]$通りある.また,$z=13$の場合,$3$辺の長さが$x,\ y,\ z$である鋭角三角形を作ることができる$(x,\ y,\ z)$の組は$[シス]$通りである.
金沢工業大学 私立 金沢工業大学 2011年 第6問
関数$f(x)=|2x-6|-4$に対して,$\displaystyle F(x)=\int_0^x f(t) \, dt (0 \leqq x \leqq 6)$とおく.

(1)$0 \leqq x \leqq [コ]$のとき,$F(x)=-x^2+[サ]x$であり,$[コ]<x \leqq 6$のとき,$F(x)=x^2-[シス]x+[セソ]$である.
(2)$F(x)$は$x=[タ]$のとき最大値$[チ]$をとり,$x=[ツ]$のとき最小値$[テト]$をとる.
明治大学 私立 明治大学 2011年 第2問
角$\theta$が$0^\circ \leqq \theta \leqq 90^\circ$を満たすとき,次の$\theta$の関数を考える.
\[ y=\sin 3\theta +6 \cos 2\theta-6 \sin^2 \frac{\theta}{2}-3 \cos \theta+12 \sin \theta \]
以下の問に答えなさい.空欄内の各文字に当てはまる数字を答えよ.

(1)$\displaystyle x=\sin \theta$とおくとき,$y$を$x$の式で表すと
\[ y=-[ケ]x^3-[コサ]x^2+[シス]x+[セ] \]
となる.
(2)(1)の$3$次関数を利用すると,$y$の最大値は$[ソ]$であり,最小値は$[タ]$であることが分かる.
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第1問
関数
\[ y=f(x)=\left\{ \begin{array}{ll}
-x^2-12x & (x<0) \\
3x^2-12x+a & (0 \leqq x)
\end{array} \right. \]
を考える.関数$y=f(x)$の区間$0 \leqq x \leqq 6$における最小値が$-12$であるという.このとき,次の問に答えなさい.

(1)$a$の値は$[ア]$である.
(2)$f(x)=0$となる$x$の値を小さい方から並べると$x=[イウエ],\ [オ],\ [カ]$である.
(3)曲線$y=f(x)$の点$\mathrm{P}(k,\ -k^2-12k)$($k<0$とする)における接線$\ell$が点$(-1,\ 15)$を通るという.このとき,$k$の値は$[キク]$である.
(4)接線$\ell$と曲線$y=f(x)$の共有点は点$\mathrm{P}$と$([ケ],\ [コサ])$で,接線$\ell$と曲線$y=f(x)$で囲まれる部分の面積は$[シス]$である.
西南学院大学 私立 西南学院大学 2010年 第2問
$1$から$9$までの数字を$1$つずつ書いた$9$枚のカードが袋の中に入っている.この中から$3$枚のカードを同時に取り出したとき,

(1)$1$枚が$2$以下で,$2$枚が$7$以上となる確率は$\displaystyle \frac{[ケ]}{[コサ]}$である.
(2)最小の数が$2$以下で,最大の数が$7$以上となる確率は$\displaystyle \frac{[シス]}{[セソ]}$である.
(3)最大の数が$7$となる確率は$\displaystyle \frac{[タ]}{[チツ]}$である.
スポンサーリンク

「シス」とは・・・

 まだこのタグの説明は執筆されていません。