タグ「シス」の検索結果

2ページ目:全37問中11問~20問を表示)
愛知学院大学 私立 愛知学院大学 2014年 第4問
$t$の関数$f(t)$を
\[ f(t)=-\frac{1}{2}(\log_2 t)^3+21(\log_4 t)^2-9 \log_4 t^2+1 \]
とおく.このとき以下の問いに答えなさい.

(1)$x=\log_2 t$とおくとき,
\[ f(t)=-\frac{[ア]}{[イ]}x^3+\frac{[ウエ]}{[オ]}x^2-[カ]x+1 \]
である.
(2)変数$t$が$1 \leqq t \leqq 256$の範囲を動くとき,$f(t)$は$t=[キク]$のとき最大値$[ケコ]$をとり,$t=[サ]$のとき最小値$\displaystyle -\frac{[シス]}{[セ]}$をとる.
杏林大学 私立 杏林大学 2014年 第4問
実数$x$に対し
\[ f(x)=e^{3x}+e^{-3x},\qquad g(x)=e^{3x}-e^{-3x} \]
で定義される$2$つの関数$f(x)$と$g(x)$および$\displaystyle h(x)=\frac{g(x)}{f(x)}$で与えられる関数$h(x)$について,以下の問いに答えよ.

(1)関数$f(x),\ g(x)$は
\[ \frac{d}{dx}f(x)=[ア] g(x),\qquad \frac{d}{dx}g(x)=[イ] f(x) \]
という関係を満たす.また,関数$h(x)$に対して
\[ h(0)=[ウ], \lim_{x \to \infty} h(x)=[エ], \lim_{x \to -\infty} h(x)=[オカ], \frac{d}{dx}h(x)=\frac{[キク]}{(f(x))^2} \]
が成り立つ.
(2)$x$座標が$\displaystyle a=\frac{1}{3} \log_e 2$である点$(a,\ h(a))$における,曲線$y=h(x)$の接線を$C$とする.接線$C$と直線$y=[エ]$の交点の$x$座標を$b$とすると,$\displaystyle b-a=\frac{[ケ]}{[コサ]}$となる.

(3)$x \geqq a$の領域において,接線$C$,曲線$y=h(x)$,直線$y=[エ]$および直線$x=t (>b)$で囲まれた図形の面積を$S(t)$とすると,
\[ \lim_{t \to \infty} S(t)=\frac{[シス]}{[セソ]}+\frac{1}{[タ]} \log_e \frac{[チ]}{[ツ]} \]
が成り立つ.
九州産業大学 私立 九州産業大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{\sqrt{5}+1}{2} \right)^3+\left( \frac{\sqrt{5}-1}{2} \right)^3=[ア] \sqrt{[イ]}$である.
(2)関数$y=-3x^2+6x (0 \leqq x \leqq 3)$の最大値は$[ウ]$で,最小値は$[エオ]$である.
(3)$2$次方程式$x^2-3x+3=0$の解は$\displaystyle x=\frac{[カ] \pm \sqrt{[キ]}i}{[ク]}$である.
(4)$\displaystyle \sin \theta \cos \theta=\frac{1}{2} (0 \leqq \theta \leqq {90}^\circ)$のとき

(i) $\displaystyle \sin \theta+\cos \theta=\sqrt{[ケ]}$である.
(ii) $\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{\sqrt{[コ]}}{[サ]}$である.

(5)正方形$\mathrm{ABCD}$の各辺に赤,青,黄,緑のいずれかの色を塗る.ただし,同じ色を$2$度以上使ってもよいものとする.

(i) 辺$\mathrm{AB}$と辺$\mathrm{BC}$が赤色になる塗り方は$[シス]$通りある.
(ii) $3$つの辺が赤色で,残りの$1$つの辺は赤色以外になる塗り方は$[セソ]$通りある.
(iii) 向かい合う辺は同じ色であるが,すべての辺が同じ色とはなっていない塗り方は$[タチ]$通りある.
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
玉川大学 私立 玉川大学 2014年 第1問
$[ア]$~$[ツ]$を埋めよ.

(1)次を計算せよ.
\[ 3+\frac{1}{3+\displaystyle\frac{1}{3+\displaystyle\frac{1}{3}}}=\frac{[アイウ]}{[エオ]},\quad 3 \times 2 \div 3^{-1}=[カキ] \]
(2)空欄を埋めよ.
\[ \frac{\sqrt{2}+2i}{1-\sqrt{2}i}=-\frac{\sqrt{[ク]}}{[ケ]}+\frac{[コ]}{[サ]}i \]
(3)$\mathrm{A}$君と,$\mathrm{A}$君の姉の年齢の和は$28$,積は$180$である.$\mathrm{A}$君の年齢は$[シス]$歳,姉の年齢は$[セソ]$歳である.
(4)$\log_8 x+\log_8 (x+2) \geqq 1$を解くと
\[ x \geqq [タ] \]
である.
(5)曲線$y=x^2$上の点$(1,\ 1)$における接線の方程式は$y=[チ]x-[ツ]$である.
松山大学 私立 松山大学 2014年 第3問
次の空所$[ア]$~$[ソ]$を埋めよ.

図のような一辺が長さ$1$の正四面体$\mathrm{ABCD}$がある.
(図は省略)

(1)$\mathrm{A}$から底面$\mathrm{BCD}$に垂線$\mathrm{AH}$を下ろすとき,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$となり,正四面体$\mathrm{ABCD}$の体積は$\displaystyle \frac{\sqrt{[ウ]}}{[エオ]}$である.
(2)辺$\mathrm{AB}$上に点$\mathrm{P}$,辺$\mathrm{BC}$上に点$\mathrm{Q}$を$\mathrm{BP}=\mathrm{CQ}=x$となるようにとる.四面体$\mathrm{PBQD}$の体積は$\displaystyle x=\frac{[カ]}{[キ]}$のときに最大となり,これは正四面体$\mathrm{ABCD}$の体積の$\displaystyle \frac{[ク]}{[ケ]}$倍である.
(3)$\displaystyle x=\frac{[カ]}{[キ]}$のとき,$\angle \mathrm{DPQ}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{DPQ}$の面積は$\displaystyle \frac{\sqrt{[シス]}}{[セソ]}$である.
松山大学 私立 松山大学 2013年 第1問
正$12$角形の異なる$3$つの頂点を結んで三角形を作る.

(1)三角形は全部で$[アイウ]$個できる.

(2)正三角形となる確率は$\displaystyle \frac{[エ]}{[オカ]}$である.

(3)直角三角形となる確率は$\displaystyle \frac{[キ]}{[クケ]}$である.

(4)二等辺三角形となる確率は$\displaystyle \frac{[コサ]}{[シス]}$である.
東京薬科大学 私立 東京薬科大学 2013年 第1問
次の$[ ]$に適当な数,式を入れよ.ただし,$*$については,$+,\ -$の$1$つが入る.

(1)$2$次方程式$x^2-4x+2=0$の$2$つの解を$\alpha,\ \beta (\alpha>\beta)$とすると,
\[ \alpha^2+\beta^2=[アイ],\quad \alpha^2-\beta^2=[ウ] \sqrt{[エ]},\quad \alpha^3+\beta^3=[オカ] \]
である.
(2)$\displaystyle \left( \frac{5}{2} \right)^{100}$の整数部分の桁数は$[キク]$である.ただし,$\log_{10}2=0.3010$とせよ.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.$\displaystyle S_n=\frac{3}{2}n^2-\frac{5}{2}n$であるとき,$a_n=[$*$ケ]n+[$*$コ]$である.
(4)$1$枚の硬貨を$5$回投げるとき,表が$3$回出る確率は$\displaystyle \frac{[サ]}{[シス]}$であり,$3$度目の表が$5$回目の試行で出る確率は$\displaystyle \frac{[セ]}{[ソタ]}$である.
杏林大学 私立 杏林大学 2013年 第3問
$x \geqq 1$の実数$x$に対し,方程式
\[ f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t} \, dt \]
を満たす関数$f(x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_1^e \frac{(\log_e t)^2}{t} \, dt=\frac{[ア]}{[イ]}$であることに注意すると,
\[ f(x)=(\log_e x)^2-\frac{[ウ]}{[エ]} \]
となる.また,曲線$y=f(x)$の変曲点の$y$座標の値は$\displaystyle \frac{[オ]}{[カ]}$である.
(2)点$(e,\ f(e))$における$y=f(x)$の接線の方程式は
\[ y=[キ] e^{[クケ]} x-\frac{[コ]}{[サ]} \]
である.この接線と曲線$y=f(x)$および直線$x=1$で囲まれた図形の面積は
\[ [シス]+\frac{1}{e} \left( [セ]+e^{[ソ]} \right) \]
である.
スポンサーリンク

「シス」とは・・・

 まだこのタグの説明は執筆されていません。