タグ「サシ」の検索結果

3ページ目:全39問中21問~30問を表示)
西南学院大学 私立 西南学院大学 2014年 第2問
両面が赤色のカードが$3$枚,片方の面が赤,もう片方の面が青のカードが$3$枚,片方の面が赤,もう片方の面が黄色のカードが$4$枚ある.この$10$枚のカードを袋に入れ,無作為に$1$枚を取り出しテーブルの上に置いたとき,以下の問に答えよ.ただし,カードをテーブルの上に置いたとき,見えている面をカードの表とする.


(1)カードの表が赤である確率は,$\displaystyle \frac{[サシ]}{[スセ]}$である.

(2)カードの表が赤であるとき,裏も赤である確率は,$\displaystyle \frac{[ソ]}{[タチ]}$である.

(3)カードの表が赤であるとき,裏が黄色でない確率は,$\displaystyle \frac{[ツ]}{[テト]}$である.
西南学院大学 私立 西南学院大学 2013年 第2問
点$(x,\ y)$が,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(5,\ 0)$,$\mathrm{C}(2,\ 4)$を頂点とする三角形$\mathrm{ABC}$の内部および周上を動くとき,以下の問に答えよ.

(1)$3x+y$の最大値は$[ケコ]$となる.
(2)$x^2-2x+y^2+2y+2$の最小値は$\displaystyle \frac{[サシ]}{[スセ]}$となり,そのときの$x$の値は$\displaystyle \frac{[ソタ]}{[チツ]}$となる.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第4問
関数$\displaystyle f(x)=2 \cos^3 x-8 \sin x \cos x-2 \sin^3 x+6 \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の設問に答えよ.

(1)$\cos x-\sin x$の最小値は$[アイ]$であり,最大値は$[ウ]$である.
(2)$f(x)$を$t=\cos x-\sin x$で表した関数を$g(t)$とおくと
\[ g(t)=[エ]t^3+[オ]t^2+[カ]t+[キ] \]
である.
(3)$f(x)$の最大値は$[ク]$,最小値は$\displaystyle \frac{[ケコ]}{[サシ]}$である.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
千葉工業大学 私立 千葉工業大学 2013年 第2問
次の各問に答えよ.

(1)関数$f(x)=8 \cos 2x+9 \tan^2 x$は,$\displaystyle f(x)=[アイ] \cos^2 x+\frac{[ウ]}{\cos^2 x}-[エオ]$と変形できる.$\displaystyle 0<x<\frac{\pi}{2}$において,$f(x)$は$\displaystyle x=\frac{[カ]}{[キ]} \pi$のとき最小値$[ク]$をとる.
(2)$x$の不等式$\log_a(x+1)^2>\log_a \{9(x+5)\}$の解は,$a>1$のとき,$[ケコ]<x<[サシ]$,$[スセ]<x$であり,$0<a<1$のときは,$[サシ]<x<[ソタ]$,$[ソタ]<x<[スセ]$である.
松山大学 私立 松山大学 2013年 第3問
$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(5,\ 4)$,$\mathrm{C}(0,\ 4)$を頂点とする長方形$\mathrm{OABC}$の辺$\mathrm{AB}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}(5,\ m)$,$\mathrm{Q}(n,\ 4)$がある.また,$\angle \mathrm{POQ}={45}^\circ$,$\angle \mathrm{AOP}=\theta$とする.

(1)$\tan \theta$を$m$で表すと$\displaystyle \tan \theta=\frac{m}{[ア]}$である.$\tan (\theta+{45}^\circ)$を$n$で表すと$\displaystyle \tan (\theta+{45}^\circ)=\frac{[イ]}{n}$である.
(2)$(1)$の結果を利用して,$m$を$n$で表すと,$\displaystyle m=\frac{[ウエ]}{n+4}-[オ]$である.また,$n$の値の範囲は$\displaystyle \frac{[カ]}{[キ]} \leqq n \leqq [ク]$である.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S$を$n$で表すと


$\displaystyle S=[ケコ]-\frac{[サシ]n}{n+4}+\frac{[ス]}{2}n$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)-\frac{[ソタ](n+4)-[チツ]}{n+4}$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)+\frac{[チツ]}{n+4}-[ソタ]$となる.

したがって,$S$の最小値は$[テト](\sqrt{[ナ]}-1)$となり,そのとき,$n=[ニ](\sqrt{[ヌ]}-1)$である.
杏林大学 私立 杏林大学 2013年 第1問
座標平面上の点$(x,\ y)$に対し,
\[ y=2 \sqrt{-x^2+4x-3}+1 \cdots\cdots① \]
が成立している.

(1)$①$の定義域は$[ア] \leqq x \leqq [イ]$,値域は$[ウ] \leqq y \leqq [エ]$である.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を$([オ],\ [カ] \pm \sqrt{[キ]})$にとると,$①$のグラフ上の任意の点$\mathrm{P}$に対し,常に$\mathrm{PA}+\mathrm{PB}=[ク]$が成り立つ.
(3)直線$y=x+k$が$①$のグラフと共有点を持つような定数$k$の範囲は
\[ [ケコ] \leqq k \leqq [サシ]+\sqrt{[ス]} \]
である.
(4)不等式$x-1 \leqq 2 \sqrt{-x^2+4x-3}+1$の解は
\[ [セ] \leqq x \leqq [ソ]+\frac{[タ]}{[チ]} \sqrt{[ツ]} \]
である.
近畿大学 私立 近畿大学 2013年 第3問
関数$f(x)$は次の等式を満たすものとする.
\[ \int_1^x f(t) \, dt=x^3+3x^2 \int_0^1 f(t) \, dt+x+k \]
ただし,$k$は定数とする.

(1)$f(x)=[ア]x^2-[イ]x+[ウ]$であり,$k=[エ]$である.関数$f(x)$は$x=[オ]$のとき最小値$[カキ]$をとる.
(2)関数$y=g(x)$のグラフと関数$y=f(x)$のグラフが,直線$x=3$に関して対称であるとすると
\[ g(x)=[ク]x^2-[ケコ]x+[サシ] \]
である.$y=g(x)$のグラフと$x$軸との共有点の$x$座標は
\[ \frac{[スセ] \pm \sqrt{[ソ]}}{[タ]} \]
であり,$y=g(x)$のグラフと$x$軸で囲まれた部分の面積は
\[ \frac{[チ] \sqrt{[ツ]}}{[テ]} \]
である.
金沢工業大学 私立 金沢工業大学 2012年 第2問
図において,$\triangle \mathrm{ABC}$は半径$1$の円$\mathrm{O}$に内接している.直線$\mathrm{PA}$,$\mathrm{PB}$は円$\mathrm{O}$の接線で,$\angle \mathrm{APB}=60^\circ$,$\angle \mathrm{ABC}=45^\circ$である.このとき,
(図は省略)

(1)$\angle \mathrm{BAP}=[ケコ]^\circ$である.
(2)$\angle \mathrm{BCA}=[サシ]^\circ$,$\angle \mathrm{AOB}=[スセソ]^\circ$である.

(3)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$である.

(4)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[ツ]+\sqrt{[テ]}}{[ト]}$である.
スポンサーリンク

「サシ」とは・・・

 まだこのタグの説明は執筆されていません。