タグ「コサ」の検索結果

3ページ目:全39問中21問~30問を表示)
近畿大学 私立 近畿大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての$2$次式$P(x)$を$x+1$で割ると,商が$x-a$であり,余りが$b$であるとする.ただし,$b$は$0$ではないとする.

(i) $2$次方程式$P(x)=0$が異なる$2$つの実数解をもつための必要十分条件は,
$(a+[ア])^2>[イ]b$である.
(ii) $P(a)=P(-a)$を満たす$a$の値は$2$つあり,小さい順に,$[ウ]$,$[エ]$である.
(iii) $P(a+b)=P(a-b)$を満たすとき,$a=[オカ]$である.

(2)袋の中に赤玉$3$個,白玉$4$個が入っている.この袋から玉を$1$個取り出し,それを戻すと同時に,その玉と同じ色の玉を$1$個加える.このような操作を$3$回繰り返す.操作が終わったときに,袋の中の赤玉と白玉が同数になっている確率は,$\displaystyle \frac{[キ]}{[ク]}$であり,白玉が赤玉より$2$個多くなっている確率は,$\displaystyle \frac{[ケ]}{[コサ]}$である.
東京理科大学 私立 東京理科大学 2012年 第1問
$a=\sqrt{7}+\sqrt{5},\ b=\sqrt{7}-\sqrt{5}$とおく.

(1)$\displaystyle \frac{b}{a}=[ア]-\sqrt{[イウ]}$,$\displaystyle \frac{a}{b} = [エ]+\sqrt{[オカ]}$である.

(2)$\displaystyle \frac{b}{a},\ \frac{a}{b}$を解にもつ$2$次方程式は$x^2-[キク]x+[ケ]=0$と書くことができる.
(3)$A=\left( \begin{array}{cc}
a & -b \\
\displaystyle\frac{1}{a} & \displaystyle\frac{1}{b}
\end{array} \right)$とおくとき,$A$の逆行列$A^{-1}$は
\[ A^{-1}=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{7}}{[コサ]}+\frac{\sqrt{5}}{[シス]} & \displaystyle\frac{\sqrt{7}}{[セソ]}-\frac{\sqrt{5}}{[タチ]} \\ \\
-\displaystyle\frac{\sqrt{7}}{[ツテ]}+\frac{\sqrt{5}}{[トナ]} & \displaystyle\frac{\sqrt{7}}{[ニヌ]}+\frac{\sqrt{5}}{[ネノ]}
\end{array} \right) \]
明治大学 私立 明治大学 2012年 第2問
空欄$[ ]$に当てはまるものを入れよ.

$\mathrm{AB}=\mathrm{AC}=r$である二等辺三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=\theta$とおく.点$\mathrm{P}$は$\angle \mathrm{PBC}=\angle \mathrm{PCA}=90^\circ$を満たす.次の問に答えよ.
(1)$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ]} \overrightarrow{b}+\frac{[ウ]}{[エ]} \overrightarrow{c} \]
が成り立つ.
(2)$\triangle \mathrm{ABC}=\triangle \mathrm{BCP}$であるのは$\displaystyle \cos \theta=\frac{[オ]}{[カ]}$のときである.このとき,$\displaystyle \triangle \mathrm{ABC}=\frac{\sqrt{[キ]}}{[ク]} \cdot r^2$である.
(3)$\mathrm{AB}=\mathrm{BP}$であるのは$\displaystyle \cos \theta=\frac{[ケ]-\sqrt{[コサ]}}{[シ]}$のときである.
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
金沢工業大学 私立 金沢工業大学 2012年 第6問
$a,\ b$を定数とする.関数$f(x)=6x^2+2ax+b$は$\displaystyle \int_0^1 f(x) \, dx=4$,$f(2)=2$を満たす.このとき,

(1)$a=[コサ]$,$b=[シス]$である.
(2)$x$軸と関数$y=f(x)$のグラフで囲まれた図形の面積は$\displaystyle \frac{[セ]}{[ソタ]}$である.
青山学院大学 私立 青山学院大学 2012年 第2問
次の定積分を求めよ.

(1)$\displaystyle \int_{\frac{1}{2}}^2 x \log x \, dx=\frac{[コサ]}{[シ]} \log [ス]-\frac{[セソ]}{[タチ]}$

(2)$\displaystyle \int_0^2 (x^2+2x+3) \log (x+1) \, dx=[ツテ] \log [ト]-\frac{[ナニ]}{[ヌ]}$
金沢工業大学 私立 金沢工業大学 2012年 第6問
$a$を正の定数とする.座標平面上において,曲線$\displaystyle y=\frac{2}{\sqrt{x}} \cdots\cdots①$上の点$\displaystyle \mathrm{A}(a,\ \frac{2}{\sqrt{a}})$における接線を$\ell$とする.

(1)接線$\ell$の方程式は$\displaystyle y=-\frac{[ア]}{a \sqrt{a}}x+\frac{[イ]}{\sqrt{a}}$と表される.
(2)接線$\ell$が点$(2,\ 1)$を通るとすると,$a$は条件$a \sqrt{a}=[ウ]a-[エ]$を満たす.これより$a=[オ]$,$[カ]+[キ] \sqrt{[ク]}$である.
(3)$a=[オ]$のとき,接点$\mathrm{A}$の$y$座標は$[ケ]$であり,接線$\ell$の傾きは$[コサ]$である.このとき,曲線$①$と接線$\ell$および直線$x=2$によって囲まれた図形の面積は$\displaystyle \frac{[シ] \sqrt{[ス]}-[セソ]}{[タ]}$である.
北海道薬科大学 私立 北海道薬科大学 2012年 第1問
次の各設問に答えよ.

(1)放物線$y=ax^2+bx-11$が頂点$(2,\ -3)$をもつとすると,$a=[アイ]$,$b=[ウ]$である.
(2)$\displaystyle \frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}=\frac{1}{18}$を満たす$x$の値は$[エオ]$,$[カ]$である.
(3)$\log_{\frac{1}{3}} \sqrt{27}+\log_{27}9 \sqrt{3}$を計算すると,$\displaystyle \frac{[キク]}{[ケ]}$である.
(4)$\displaystyle \int_{-3}^1 |(x+1)(x-3)| \, dx$の値は$[コサ]$である.
千葉工業大学 私立 千葉工業大学 2012年 第4問
三角形$\mathrm{ABC}$は$\mathrm{AB}=2$,$\mathrm{AC}=7$であり,辺$\mathrm{BC}$を$2:3$に内分する点を$\mathrm{M}$とすると$\angle \mathrm{BAM}={60}^\circ$である.$\mathrm{AM}=x$とするとき,次の問いに答えよ.

(1)三角形$\mathrm{ABM}$の面積を$x$を用いて表すと$\displaystyle \frac{\sqrt{[ア]}}{[イ]}x$である.また,$\mathrm{BM}:\mathrm{MC}=2:3$より,三角形$\mathrm{AMC}$の面積は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オ]}x$である.
(2)$\displaystyle \sin \angle \mathrm{MAC}=\frac{[カ] \sqrt{[キ]}}{[クケ]}$であり,$\angle \mathrm{MAC}<{120}^\circ$であることから,$\cos \angle \mathrm{MAC}=\displaystyle\frac{[コサ]}{[シス]}$である.
(3)$\displaystyle \sin \angle \mathrm{BAC}=\frac{[セ] \sqrt{[ソ]}}{[タ]}$である.
(4)三角形$\mathrm{ABC}$の面積は$[チ] \sqrt{[ツ]}$であり,$\displaystyle x=\frac{[テト]}{[ナ]}$である.
九州産業大学 私立 九州産業大学 2012年 第2問
円$\mathrm{O}$に内接する台形$\mathrm{ABCD}$において,$\mathrm{AB}=4$,$\mathrm{CD}=2$,$\mathrm{AB}$と$\mathrm{CD}$が平行である.対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{ABD}={60}^\circ$である.

(1)$\triangle \mathrm{ABE}$の面積は$[ア] \sqrt{[イ]}$である.
(2)辺$\mathrm{AD}$の長さは$\mathrm{AD}=[ウ] \sqrt{[エ]}$である.
(3)台形$\mathrm{ABCD}$の高さは$[オ] \sqrt{[カ]}$である.
(4)台形$\mathrm{ABCD}$の面積は$[キ] \sqrt{[ク]}$である.

(5)円$\mathrm{O}$の半径は$\displaystyle \frac{[ケ] \sqrt{[コサ]}}{[シ]}$である.
スポンサーリンク

「コサ」とは・・・

 まだこのタグの説明は執筆されていません。