タグ「ゲーム」の検索結果

6ページ目:全72問中51問~60問を表示)
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$a,\ b$を実数とする.$2$次方程式$x^2+ax+b=0$の$1$つの解$\alpha$が$1-\sqrt{3}i$のとき,$a=[$1$]$,$b=[$2$]$となる.もう$1$つの解を$\beta$とするとき,$\alpha-2$,$\beta-2$を解とし,$x^2$の係数が$1$である$2$次方程式は$x^2+[$3$]x+[$4$]=0$となる.
(2)$a=\sqrt{3}$のとき,$|a-2|+|a+3|$の値は$[$5$]$である.また,方程式$|x+1|=4$の解は$[$6$]$である.
(3)$2+\sqrt{2}$の整数部分を$a$,小数部分を$b$とするとき,$\displaystyle 2a^2-\left( b^3+\frac{1}{b^3} \right)$の値は$[$7$]$である.
(4)$1$個のさいころを投げて,出た目が奇数なら$2$ポイント,偶数なら$4$ポイント獲得できるゲームがある.$1$回投げて獲得できるポイントの期待値は$[$8$]$である.また,さいころを$3$回投げたとき,獲得したポイントの合計が$12$である確率は$[$9$]$であり,$10$以上である確率は$[$10$]$である.
(5)放物線$y=x^3-3x^2+2$上の点$(1,\ 0)$における接線の方程式は$[$11$]$である.
北星学園大学 私立 北星学園大学 2012年 第4問
男子チームと女子チームがある.$1$から$8$までの数字が書かれた$8$枚のカードがある.カードを$1$枚引き,その数字が$5$以下であれば男子の勝ち,$5$より大きければ女子の勝ちになるゲームをする.引いたカードを戻さずにこのゲームを$3$回するとき,以下の問に答えよ.

(1)$3$回ともすべて男子の勝ちとなる確率を求めよ.
(2)$3$回のゲームで取り出したカードの数字の小さい順に,$X,\ Y,\ Z$とする.$X=2$のとき,少なくとも$1$回は男子が勝ちとなる場合の数を求めよ.
(3)$3$回のゲームで取り出したカードの数字の小さい順に,$X,\ Y,\ Z$とする.少なくとも$1$回は男子が勝ちとなる場合について$X$の期待値を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第4問
一辺の長さ$1$の正六角形の頂点を時計まわりの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.動点$\mathrm{P}$は最初は点$\mathrm{A}$上にある.コインを投げ,表が出たら$2$,裏が出たら$1$だけ$\mathrm{P}$を正六角形上で時計まわりに動かすゲームを考える.動点$\mathrm{P}$が最初にちょうど点$\mathrm{A}$上に戻ったときゲーム終了とする.


(1)ちょうど$1$周してゲーム終了となる確率は$\displaystyle \frac{[ア][イ]}{[ウ][エ]}$である.

(2)ちょうど$2$周してゲーム終了となる確率は$\displaystyle \frac{[オ][カ][キ]}{\kakkofour{ク}{ケ}{コ}{サ}}$である.
和歌山県立医科大学 公立 和歌山県立医科大学 2012年 第3問
$\mathrm{A}$と$\mathrm{B}$の$2$人が袋の中から玉を$1$つずつ交互に取り出すゲームを考える.最初に玉を取り出すのは$\mathrm{A}$で,また$\mathrm{A}$と$\mathrm{B}$はともに取り出した玉を袋に戻さない.

(1)初め袋の中には白玉が$(2n-2)$個($n \geqq 1$),赤玉が$2$個入っているとする.$2$つ目の赤玉を取り出した方を勝ちとして終了するとき,$\mathrm{A}$が勝つ確率を求めよ.
(2)初め袋の中には白玉が$(2n-3)$個($n \geqq 2$),赤玉が$2$個,黒玉が$1$個入っているとする.次の$(ⅰ)$と$(ⅱ)$にしたがって勝敗を決めるとき,$\mathrm{A}$が勝つ確率を求めよ.

(i) 一方が黒玉を取り出したときは,他方を勝ちとして終了する.
(ii) 一方が$2$つ目の赤玉を取り出したときは,その者を勝ちとして終了する.
釧路公立大学 公立 釧路公立大学 2012年 第2問
以下の各問に答えよ.

(1)次の式の展開式における$x^3y^3$の項の係数を求めよ.$(x-2y)^6$
(2)アタリくじ$3$枚とハズレくじ$7$枚が入っている箱がある.この箱からくじを$3$枚同時に取り出し,取り出されたアタリくじ$1$枚について$500$円を受け取るゲームがある.このゲームの参加料が何円未満であれば,このゲームに参加することが得であるといえるか求めよ.
(3)$3$辺が$\mathrm{AB}=12$,$\mathrm{BC}=13$,$\mathrm{CA}=5$である$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の接点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{BP}$の長さと内接円の半径を求めよ.
神戸大学 国立 神戸大学 2011年 第3問
袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っている.4つの数$0,\ 3,\ 6,\ 9$をマジックナンバーと呼ぶことにする.次のようなルールをもつ,1人で行うゲームを考える.\\
\quad ルール:袋から無作為に 1 枚ずつカードを取り出していく.ただし,一度取
り出したカードは袋に戻さないものとする.取り出したカードの数字の合計がマ
ジックナンバーになったとき,その時点で負けとし,それ以降はカードを取り出
さない.途中で負けとなることなく,すべてのカードを取り出せたとき,勝ちと
する.以下の問に答えよ.

(1)2枚のカードを取り出したところで負けとなる確率を求めよ.
(2)3枚のカードを取り出したところで負けとなる確率を求めよ.
(3)このゲームで勝つ確率を求めよ.
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第4問
次のようなゲームを考える.成功の確率が$p \ (0<p<1)$,失敗の確率が$q \ (=1-p)$であるような試行をAとBの2人が行い,先に成功した方を勝ちとする.なお,Aが勝つ確率がBが勝つ確率より大きいとき,ゲームはAに有利であるといい,Aが勝つ確率とBが勝つ確率が等しいとき,ゲームは公平であるという.このとき,次の問に答えよ.

(1)Aから始めて,以後交互に試行を行う.すなわち,ABABAB$\cdots$という順で試行を行う.このとき,$p$の値にかかわらずゲームはAに有利であることを示せ.
(2)Aから始めるが,Aが1回に対して,Bは2回試行を行えるとする.すなわち,ABBABB$\cdots$という順で試行を行う.$p$がどのような値のとき,ゲームは公平になるか.
(3)(2)において,ゲームが公平であるとき,$q$についての等式$q=q^2+q^4+q^6+\cdots$が成り立つことを示せ.
立教大学 私立 立教大学 2011年 第2問
袋に赤玉が$1$個,白玉が$2$個の合計$3$個の玉が入っている.袋から玉$1$個を取り出し,玉の色を確認し,また袋に戻す,という作業を$2$回行い,これを$1$回の試行と考える.この試行を使って,$\mathrm{A}$君と$\mathrm{B}$君の$2$人が以下のようなゲームをすることにした.
\begin{itemize}
取り出した玉の色の$1$番目が白,$2$番目が赤であれば,$\mathrm{A}$君が勝ち抜けとなり,
取り出した玉の色の$1$番目が赤,$2$番目が白であれば,$\mathrm{B}$君が勝ち抜けとなり,
取り出した玉の色が$2$回とも同じ色であれば,引き分けとし,試行を続ける.
\end{itemize}
また,どちらか$1$人が勝ち抜けた後も,同様に玉を$2$回出し入れする試行を続け,以下の場合にゲームを終了させることにした.
\begin{itemize}
残った$1$人が$\mathrm{A}$君のとき,取り出した玉の色の$1$番目が白,$2$番目が赤である場合.
残った$1$人が$\mathrm{B}$君のとき,取り出した玉の色の$1$番目が赤,$2$番目が白である場合.
\end{itemize}
このとき,次の問に答えよ.

(1)$1$回目の試行で,$\mathrm{A}$君が勝ち抜ける確率,$\mathrm{B}$君が勝ち抜ける確率,引き分けになる確率をそれぞれ求めよ.
(2)$3$回目の試行でゲームが終了する確率を求めよ.
(3)$\mathrm{A}$君のほうが早く勝ち抜けし,その後,$n$回目の試行で$\mathrm{B}$君がゲームを終了させる確率を$n$を用いて表せ.ただし,$n \geqq 2$とし,$n$には$\mathrm{A}$君が勝ち抜けるまでの試行の回数も含むものとする.
立教大学 私立 立教大学 2011年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$名が次のようなルールのゲームを行った.

$\mathrm{A}$と$\mathrm{B}$で同時にサイコロを振り,偶数が出た場合は得点を$1$とし,奇数が出た場合は得点を$0$とする.
それぞれが$5$回サイコロを振り終わった時点で,より多くの得点をあげたものを勝者とし,得点が同じ場合は引き分けとする.
このとき,次の問に答えよ.

(1)$\mathrm{A}$の得点が$0$点かつ$\mathrm{B}$の得点が$1$点という経過の後で,終了時に$\mathrm{A}$の得点が$4$点である場合,得点の取り方は何通りあるか.
(2)$\mathrm{A}$と$\mathrm{B}$が引き分ける確率を求めよ.
(3)$\mathrm{A}$が勝利する確率を求めよ.
スポンサーリンク

「ゲーム」とは・・・

 まだこのタグの説明は執筆されていません。