タグ「ゲーム」の検索結果

5ページ目:全72問中41問~50問を表示)
学習院大学 私立 学習院大学 2012年 第2問
$n$を自然数とする.$1$枚のコインを投げ続けて,裏が出た時点で終了するゲームを行う.ただし,$n$回続けて表が出たときもゲームは終了するものとする.このゲームで出た表の数を$p$とするとき,次のように得点を与える.

$p=0$ならば得点は$0$
$p \geqq 1$ならば得点は$3^p$である.

得点の期待値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
次の問いに答えよ.

(1)自然数$a=[(43)],\ b=[(44)]$は
\[ \frac{31}{99}=\frac{1}{a}+\frac{1}{b}+\frac{1}{11ab} \]
をみたす.ただし$a<b$とする.
(2)$4$人でプレーするゲームの大会がある.全部で$v$人のプレーヤーがゲームを繰り返し行い,各プレーヤーは他のすべてのプレーヤーと必ず$1$回だけ対戦する.\\
\quad この大会の総ゲーム数を$b$とし,各プレーヤーは$r$回のゲームに参加するとする.たとえば$r=1$のとき,$v=[(45)],\ b=[(46)]$であるが,$r=2,\ 3$のときは条件をみたす大会は成立しない.$r=4$のとき,$v=[(47)][(48)],\ b=[(49)][(50)]$である.
中央大学 私立 中央大学 2012年 第4問
以下の設問に答えよ.

(1)ゲーム$\mathrm{A}$を
\begin{itemize}
$5$枚の硬貨を同時に投げる.
表が出た硬貨が$3$枚以上ある場合は得点$1$,
それ以外の場合は得点$0$
\end{itemize}
とする.このゲーム$\mathrm{A}$を$3$回行うとき,合計得点が$2$以上になる確率を求めよ.
(2)ゲーム$\mathrm{B}$を
\begin{itemize}
$3$つのサイコロを同時に振る.
同じ目のサイコロが$2$つ以上ある場合は得点$1$,
それ以外の場合は得点$0$
\end{itemize}
とする.このゲーム$\mathrm{B}$を$3$回行うとき,合計得点が$2$以上になる確率を求めよ.
日本女子大学 私立 日本女子大学 2012年 第3問
$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$,$\mathrm{B}$の$2$人がゲームをして,先に$3$勝した方が優勝する.各回のゲームで$\mathrm{A}$が勝つ確率を$\sin^2 \theta$,$\mathrm{B}$が勝つ確率を$\cos^2 \theta$とする.$t=\cos 4\theta$とおく.以下の問いに答えよ.

(1)ちょうど$3$回目のゲームで優勝が決まる確率を$t$の$1$次式で表せ.
(2)ちょうど$4$回目のゲームで優勝が決まる確率$p(\theta)$を$t$の$2$次式で表せ.
(3)確率$p(\theta)$の最大値を求めよ.
成城大学 私立 成城大学 2012年 第1問
あるゲームでは,確率$p$で表が出るコインを$3$回投げる.表が$3$回出れば$15$円,ちょうど$2$回出れば$3$円,$1$回だけ出れば$1$円,$1$回も出なければ$6$円それぞれ支払わなければならない.

(1)支払額の期待値を$p$の関数として表せ.
(2)支払額の期待値を最小にするような$p$の値とそのときの期待値を求めよ.
昭和大学 私立 昭和大学 2012年 第5問
硬貨を投げて座標平面上の点を移動させるゲームをする.ゲームの規則は,硬貨を投げて表が出たら$x$軸の正の方向に$1$だけ進み,裏が出たら$y$軸の正の方向に$1$だけ進むものとする.点は原点から出発する.以下の各問に答えよ.

(1)点$(3,\ 3)$に到着する確率を求めよ.
(2)点$(1,\ 1)$を通って点$(3,\ 3)$に到着する確率を求めよ.
(3)点$(1,\ 1)$を通るが,点$(2,\ 2)$を通らずに点$(3,\ 3)$に到着する確率を求めよ.
中央大学 私立 中央大学 2012年 第4問
$\mathrm{X}$と$\mathrm{Y}$の$2$人が,次のゲームを繰り返し行う.
\begin{itemize}
$\mathrm{X}$と$\mathrm{Y}$それぞれが,所持しているすべての硬貨を同時に投げる.
表が出た硬貨の枚数が多い方を勝ちとし,枚数が同じ場合は引き分けとする.
勝った方は,負けた方から硬貨を$1$枚もらう.また引き分けの場合は,硬貨のやりとりはしない.
\end{itemize}
ゲーム開始時に,$\mathrm{X}$は$3$枚,$\mathrm{Y}$は$2$枚の硬貨を所持している.このとき以下の設問に答えよ.

(1)$1$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$4$枚になる確率を求めよ.
(2)$2$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$5$枚になる確率を求めよ.
中央大学 私立 中央大学 2012年 第2問
$\mathrm{C}$,$\mathrm{H}$,$\mathrm{U}$,$\mathrm{O}$のいずれかの文字が書かれたカードがある.いま,$\mathrm{C}$が$1$枚,$\mathrm{H}$が$2$枚,$\mathrm{U}$が$4$枚,$\mathrm{O}$が$n$枚からなるカードの山をよく切り,山から同時に$3$枚のカードを抜き出す.ただし,$n \geqq 0$とする.このとき,次の問に答えよ.

(1)$3$枚とも同じ文字である確率,すべて異なる文字である確率をそれぞれ$n$の式で表せ.
(2)$3$枚とも同じ文字であれば得点を$2$点得,すべて異なる文字であれば得点を$1$点失い,その他の場合は得点に変化がないというゲームがある.このゲームで得る得点の期待値が$0$点以下となるような$n$の値の範囲を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
日本女子大学 私立 日本女子大学 2012年 第4問
$\mathrm{A}$,$\mathrm{B}$の$2$人がじゃんけんを繰り返すゲームをする.$\mathrm{A}$,$\mathrm{B}$のどちらかが$2$回多く勝った時点でゲームは終了とする.$1$回のじゃんけんで$\mathrm{A}$が勝つ確率,$\mathrm{B}$が勝つ確率,あいこの確率はいずれも$\displaystyle \frac{1}{3}$である.自然数$n$に対して,じゃんけんを$n$回行った時点でちょうどゲームが終了となる確率を$p_n$とおく.また,じゃんけんを$n$回行った時点で$\mathrm{A}$,$\mathrm{B}$のどちらかが$1$回多く勝っている確率を$q_n$とおき,ともに同じ回数だけ勝っている確率を$r_n$とおく.以下の問いに答えよ.

(1)$p_1,\ q_1$および$r_1$の値を求めよ.
(2)$n \geqq 2$のとき,$p_n$を$q_{n-1}$を用いて表せ.
(3)$n \geqq 2$のとき,$q_n,\ r_n$のそれぞれを$q_{n-1}$と$r_{n-1}$を用いて表せ.
(4)$n \geqq 2$のとき$q_n+kr_n=l(q_{n-1}+kr_{n-1})$を満たす実数$k,\ l$の値を$2$組求めよ.
(5)$(4)$で求めた$k,\ l$の値の$2$組を$k_1,\ l_1$と$k_2,\ l_2$とおく.ただし$k_1<k_2$とする.数列$\{q_n+k_1r_n\}$,数列$\{q_n+k_2r_n\}$,数列$\{q_n\}$,数列$\{r_n\}$の一般項をそれぞれ$l_1,\ l_2$および$n$を用いて表せ.
(6)数列$\{p_n\}$の一般項を$l_1,\ l_2$および$n$を用いて表せ.
スポンサーリンク

「ゲーム」とは・・・

 まだこのタグの説明は執筆されていません。