タグ「ゲーム」の検索結果

4ページ目:全72問中31問~40問を表示)
東北大学 国立 東北大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人が,サイコロを$1$回ずつ交互に投げるゲームを行う.自分の出したサイコロの目を合計して先に$6$以上になった方を勝ちとし,その時点でゲームを終了する.$\mathrm{A}$から投げ始めるものとし,以下の問いに答えよ.

(1)$\mathrm{A}$がちょうど$2$回投げて$\mathrm{A}$が勝ちとなる確率を求めよ.
(2)$\mathrm{B}$がちょうど$2$回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(3)$\mathrm{B}$がちょうど$3$回投げて,その時点でゲームが終了していない確率を求めよ.
東北大学 国立 東北大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$の2人が,サイコロを1回ずつ交互に投げるゲームを行う.自分の出したサイコロの目を合計して先に6以上になった方を勝ちとし,その時点でゲームを終了する.$\mathrm{A}$から投げ始めるものとし,以下の問いに答えよ.

(1)$\mathrm{B}$がちょうど1回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(2)$\mathrm{B}$がちょうど2回投げて$\mathrm{B}$が勝ちとなる確率を求めよ.
(3)$\mathrm{B}$がちょうど2回投げて,その時点でゲームが終了していない確率を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第2問
$1$枚の硬貨を投げて,表が出ると$2$点入り,裏が出ると$-1$点入るゲームを考える.このゲームをくり返し$6$回行ったときの合計得点を$X$点とする.次の問いに答えよ.

(1)$X$が$3$である確率を求めよ.
(2)$X$が負である確率を求めよ.
(3)$X$の期待値を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第2問
$1$枚の硬貨を投げて,表が出ると$2$点入り,裏が出ると$-1$点入るゲームを考える.このゲームをくり返し$6$回行ったときの合計得点を$X$点とする.次の問いに答えよ.

(1)$X$が$3$である確率を求めよ.
(2)$X$が負である確率を求めよ.
(3)$X$の期待値を求めよ.
滋賀大学 国立 滋賀大学 2013年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$人がそれぞれ$9$個のボールを持っていて,次のようなゲームを行う.まずどちらかが硬貨を投げ,表であれば$\mathrm{A}$の勝ち,裏であれば$\mathrm{B}$の勝ちとする.勝者は$0$から$3$までの数が$1$つずつ書かれた$4$枚のカードから無作為に$1$枚を取り出し,書かれている数だけ敗者からボールを受け取る.ただし,取り出したカードはもとに戻すものとする.このとき,次の問いに答えよ.

(1)このゲームを$2$回続けて行ったとき,$2$人の持っているボールの個数が同じである確率を求めよ.
(2)このゲームを$2$回続けて行ったとき,$\mathrm{A}$が$\mathrm{B}$よりも$2$個多くボールを持っている確率を求めよ.
(3)このゲームを$3$回続けて行ったとき,$2$人の持っているボールの個数が同じである確率を求めよ.
福井大学 国立 福井大学 2013年 第1問
$2$つのさいころを同時に投げることをくり返し,投げるのを止めた時点までの出た目の総和が得点となるゲームを行う.さいころは何回投げてもよいし,途中で投げるのを止めてもよいが,$2$つのさいころで同じ目が出た場合は得点は$0$点となり,以降さいころを投げることもできなくなる.例えば,下の得点表において,$\mathrm{A}$君は$2$回で投げるのを止めて$18$点,$\mathrm{B}$君は$3$回目で「$6$と$6$」を出してしまったので$0$点となる.$\mathrm{C}$君は$1$回さいころを投げたところである.以下の問いに答えよ.

\begin{tabular}{|c||c|c|c|}
\hline
& $\mathrm{A}$君 & $\mathrm{B}$君 & $\mathrm{C}$君 \\ \hline
$1$回目 & $3$と$6$ & $1$と$3$ & $5$と$6$ \\
$2$回目 & $4$と$5$ & $4$と$6$ & \\
$3$回目 & 止 & $6$と$6$ & \\ \hline
得点 & $18$ & $0$ & \\ \hline
\end{tabular}


(1)$2$つのさいころを$1$回だけ投げてゲームを止めたときの,得点の期待値を求めよ.
(2)$\mathrm{C}$君がもう$1$回さいころを投げてゲームを止めたときの,得点の期待値を求めよ.
(3)これまでに出した目の合計が$x$である人がいる.この人がもう$1$回さいころを投げてゲームを止めたときの得点の期待値$y$を,$x$を用いて表せ.
(4)(3)で求めた$y$について,$y<x$となる$x$の範囲を求めよ.
大阪薬科大学 私立 大阪薬科大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次方程式$x^2+x+p=0$の$2$解$\alpha,\ \beta$に対して$\alpha^2-\beta^2=3$となるとき,$p=[ ]$である.
(2)$xy$座標平面上で,$x$座標と$y$座標がいずれも整数である点を格子点という.$x \geqq 0$,$y \geqq 0$,$x+2y \leqq 100$を同時に満たす格子点の個数は$[ ]$である.
(3)関数$f(x)=a(\log_3 x)^2+\log_9 bx$が,$\displaystyle x=\frac{1}{3}$で最小値$\displaystyle \frac{1}{4}$をとるとき,$(a,\ b)=[ ]$である.
(4)関数$\displaystyle y=2 \sin \left( 2x+\frac{\pi}{2} \right)$のグラフを描きなさい.
(5)表と裏が等確率で出るコインを$n$回投げ,表が出る回数が$0$回ならば$0$点,$1$回ならば$x$点,$2$回以上ならば$y$点とするゲームを考え,その点数の期待値を$E_n$とする.$n \geqq 2$の$n$に対して,不等式$E_n \geqq y$が$n$によらずに成り立つとき,$x$と$y$の間の関係を調べなさい.ただし,$x$と$y$は正とする.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
埼玉大学 国立 埼玉大学 2012年 第3問
正三角形の頂点を反時計回りにそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とし,頂点$\mathrm{A}$上に碁石が置かれているとする.さいころを何回か投げ,以下の規則[R]に従って碁石を移動させるゲームを考える.\\
$[\text{R}]$ \quad さいころの目が$3$の倍数のときは反時計回りに隣の頂点に移動し,$3$の倍数でないときは移動しないでその頂点に留まる.\\
このとき下記の設問に答えなさい.

(1)さいころを$3$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ求めなさい.
(2)さいころを$n$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ$p,\ q,\ r$とする.さらに続けて$4$回投げたとき,碁石が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$上にある確率をそれぞれ求めなさい.
(3)さいころを$100$回投げたとき,碁石が置かれている確率の最も高い頂点は$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうちのどれか求めなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
スポンサーリンク

「ゲーム」とは・・・

 まだこのタグの説明は執筆されていません。