タグ「ゲーム」の検索結果

1ページ目:全72問中1問~10問を表示)
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第4問
サイコロを何回か振って最後に出た目を得点とするゲームを行う.

(1)サイコロを$1$回だけ振ることができるときの得点の期待値$E_1$を求めよ.
(2)サイコロを$2$回まで振ることができるとき,$1$回目に$m$以上の目が出たらそこでやめ,$m$より小さい目が出たら$2$回目を振ることにする.このときの得点の期待値$E_2(m)$を$m$を用いて表し,$E_2(m)$が最大となる$m$を求めよ.
(3)$n$を$2$以上の自然数,$m_1,\ \cdots,\ m_{n-1}$を$6$以下の自然数とする.$n$回までサイコロを振ることができるとき,$i$回目に$m_{n-i}$以上の目が出たらそこでやめ,$m_{n-i}$より小さい目が出たら$i+1$回目を振るという規則でサイコロを振り続ける.ただし,$n$回サイコロを振ったらそこでやめる.このときの得点の期待値を$E_n(m_1,\ \cdots,\ m_{n-1})$とする.以下の問いに答えよ.

(i) $E_3(m_1,\ m_2)$を$E_2(m_1)$,$m_2$を用いて表し,$E_3(m_1,\ m_2)$が最大となる$m_1,\ m_2$とそのときの$E_3(m_1,\ m_2)$の値を求めよ.
(ii) $n \geqq 4$とする.$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$の最大値を$e_{n-1}$とすると,$E_n(m_1,\ \cdots,\ m_{n-1})$が最大となるのは,$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$が$e_{n-1}$となり,かつ$m_{n-1}$が$e_{n-1}$以上の最小の自然数となるときである.このことを示せ.

ただし,得点が$k$となる確率を$p(k)$としたとき,
\[ p(1)+2p(2)+3p(3)+4p(4)+5p(5)+6p(6) \]
を得点の期待値とよぶ.
沖縄国際大学 私立 沖縄国際大学 2016年 第4問
以下の各問いに答えなさい.

(1)次の値を求めなさい.

(i) $\perm{5}{2}$
(ii) $\comb{5}{4}$

(2)$\mathrm{A}$と$\mathrm{B}$の$2$人がそれぞれ$1$枚のコインを投げ,両方とも表が出れば$\mathrm{A}$の勝ち,それ以外は$\mathrm{B}$の勝ちとなるゲームを行う.このゲームを繰り返し,先に$3$勝した方を優勝とする.このとき,以下の確率を求めなさい.

(i) $\mathrm{A}$が$4$戦目で優勝する.
(ii) $\mathrm{A}$が$3$勝$2$敗で優勝する.
(iii) $\mathrm{A}$が優勝する.
明治大学 私立 明治大学 2016年 第2問
次の$[ ]$に適する数を入れよ.

(1)${48}^{30}$は$[ア][イ]$桁の数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
(2)放物線$y=x^2-7x+6$と直線$y=x-1$は$2$点$([ウ],\ [エ])$,$([オ],\ [カ])$(ただし,$[ウ]<[オ]$)で交わり,両者によって囲まれる部分の面積は$[キ][ク]$である.
(3)$\mathrm{A}$と$\mathrm{B}$が,あるゲームで対戦している.$\mathrm{A}$と$\mathrm{B}$の強さは互角で,$1$回の対戦で勝つ確率はいずれも$\displaystyle \frac{1}{2}$である.引き分けは,ないものとする.

(i) $5$回目の対戦が終わったところで,$\mathrm{A}$が$3$勝,$\mathrm{B}$が$2$勝している確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.
(ii) $\mathrm{B}$が先に$3$勝する前に$\mathrm{A}$が先に$2$勝する確率は$\displaystyle \frac{[シ][ス]}{[セ][ソ]}$である.
龍谷大学 私立 龍谷大学 2016年 第3問
$\mathrm{A}$と$\mathrm{B}$の$2$人が次のゲームを行う.$1$から$6$までの数が$1$つずつ記入された$6$枚のカードがあり,そのうち$\mathrm{A}$は奇数の書かれた$3$枚のカードを,$\mathrm{B}$は偶数の書かれた$3$枚のカードを持っている.

$2$人が,それぞれ持っているカードから無作為に$1$枚を選び,同時に出す.このとき大きい数を出した方を勝ちとする.
この勝負を,$1$度出したカードは戻さずに続けて$2$回行う.

(1)$1$回目の勝負で,$\mathrm{A}$が勝つ確率を求めなさい.
(2)$\mathrm{A}$が$2$連勝する確率を求めなさい.
(3)$\mathrm{A}$が$2$連敗する確率を求めなさい.
横浜市立大学 公立 横浜市立大学 2016年 第2問
$n$枚のカードの表(おもて)面に相異なる整数値が書かれている.ただし,どのような数値が書かれているのかはあらかじめわかっていない.

はじめにすべてのカードが裏返しでおかれている.ここから$1$枚ずつ好きなカードをめくっていき,書かれている数値が$n$枚のカードの中で最大だと思ったらめくるのをやめる$1$人ゲームを考える.$n$枚のカードをすべてめくり終えてしまった場合,次にめくるカードがないのでゲームは終了である.
ゲームの勝敗は,最後にめくったカードに書かれていた数値が$n$枚のカードの中で最大であれば勝ち,そうでなければ負けとする.
$n$未満の自然数$k$について以下の戦略$S_k$を考える:
はじめの$k$枚までは必ずめくり,その$k$枚に書かれていた数値のうち最大のものを$M$とする.$k+1$枚目以降で$M$より大きな数が書かれたカードをめくったら,ただちにめくるのをやめる.

戦略$S_k$にしたがった場合に,このゲームに勝つ確率を$P_{n,k}$とする.以下の問いに答えよ.

(1)$P_{3,1}$を求めよ.
(2)$i$を$k+1$以上,$n$以下の整数とする.戦略$S_k$にしたがった場合に,ちょうど$i$枚のカードをめくって勝つ確率を求めよ.
(3)$n$が十分に大きいとき,戦略$S_k$を使ってどのくらい勝つことが出来るのかを考えてみよう.$n$に対してどのくらいの$k$を用いるかによって勝てる確率は変わる.簡単にするため,$n=3p$の場合を考える.ただし,$p$は自然数である.このとき$k=p$として,極限値
\[ \lim_{p \to \infty} P_{n,k} \]
を求めよ.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人で交互にボールを的に向かって投げるゲームを行う.先にボールを的に当てた方を勝ちとしゲームを終了する.$\mathrm{A}$がボールを$1$回投げて的に当たる確率は$p$,$\mathrm{B}$がボールを$1$回投げて的に当たる確率は$q$である.ただし,$0<p<1$,$0<q<1$である.$\mathrm{A}$を先攻とし,$\mathrm{A}$の最初の投球を$1$回目,次の$\mathrm{B}$の投球を$2$回目,$\cdots$と数える.次の問いに答えよ.

(1)$n$回目の投球で$\mathrm{A}$がゲームに勝つ確率を求めよ.
(2)$\mathrm{A}$がゲームに勝つ確率を求めよ.
(3)$\mathrm{B}$がゲームに勝つ確率が,$\mathrm{A}$が勝つ確率より高くなるときの$p,\ q$の条件を求めよ.また,その条件を満たす$(p,\ q)$の領域を横軸$p$,縦軸$q$の座標平面に図示せよ.
佐賀大学 国立 佐賀大学 2015年 第3問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第4問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
スポンサーリンク

「ゲーム」とは・・・

 まだこのタグの説明は執筆されていません。