タグ「グラフ」の検索結果

3ページ目:全576問中21問~30問を表示)
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
関数$f(x)=\langle\!\langle x \rangle\!\rangle-2 \langle\!\langle x-1 \rangle\!\rangle+\langle\!\langle x-2 \rangle\!\rangle$を考える.

ここで,実数$u$に対して$\displaystyle \langle\!\langle u \rangle\!\rangle=\frac{u+|u|}{2}$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$g(x)$の最大値を求めよ.

(3)$(2)$の$g(x)$に対して,$\displaystyle p(s)=\int_0^3 (x-s)^2 g(x) \, dx$とおくとき,$p(s)$の最小値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
座標平面において,実数$x$に対して,$4$点$(x,\ 0)$,$(x+1,\ 0)$,$(x+1,\ 1)$,$(x,\ 1)$を頂点とする正方形で囲まれる領域を$A_x$とし,$A_1 \cap A_x$の面積を$f(x)$とおく.ただし,$A_1 \cap A_x$が空集合あるいは線分のときは,$f(x)=0$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$\displaystyle g \left( \frac{1}{2} \right)$,$g(2)$を求めよ.

(3)$(2)$の$g(x)$について,$\displaystyle \int_0^3 xg(x) \, dx$を求めよ.
高知大学 国立 高知大学 2016年 第1問
実数の定数$a$に対し,二つの関数$f(x)=x^2-4ax+1$および$g(x)=|x|-a$を考える.このとき,次の問いに答えよ.

(1)$a=1$のとき,$y=f(x)$と$y=g(x)$のグラフを描け.
(2)$f(x)>0$が$-4<x<4$をみたすすべての$x$に対して成り立つような$a$の範囲を求めよ.
(3)$f(x)>0$または$g(x)>0$が,$-4<x<4$をみたすすべての$x$に対して成り立つような$a$の範囲を求めよ.
和歌山大学 国立 和歌山大学 2016年 第4問
$a \geqq 0$を満たす実数$a$に対して,関数
\[ f(t)=t^3-6t^2+9t \]
の$-1 \leqq t \leqq a$における最大値を$g(a)$とする.次の問いに答えよ.

(1)$g(2)$と$g(5)$を求めよ.
(2)$0 \leqq x \leqq 5$の範囲で$y=g(x)$のグラフの概形をかけ.
(3)$y=g(x)$のグラフと$x$軸および直線$x=5$で囲まれた部分の面積$S$を求めよ.
香川大学 国立 香川大学 2016年 第3問
$3$つの関数$f(x)=\log_3(18-x)$,$g(x)=\log_3(4x^2)$,$h(x)=\log_9(4x^4)$について,次の問に答えよ.

(1)関数$y=f(x)$のグラフをかけ.
(2)$0<x<2$のとき,$f(x)$,$g(x)$,$h(x)$の大小を比較せよ.
(3)関数$\displaystyle y=f(x)-\frac{1}{2}g(x)+h(x)$の$0<x<18$における最大値とそのときの$x$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
関数$f(x)=x^2e^x (x>-3)$を考える.


(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.

(2)曲線$y=f(x)$上の点$(1,\ e)$における接線の方程式を求めよ.

(3)定積分$\displaystyle \int_0^1 xe^x \, dx$を求めよ.

(4)曲線$y=f(x)$と$(2)$で求めた接線と$x$軸とで囲まれた部分の面積を求めよ.
大分大学 国立 大分大学 2016年 第2問
自然数$n$に対して関数$y=2nx-x^2$のグラフと$x$軸で囲まれた領域(境界線を含む)$R_n$を考える.以下の問いに答えなさい.

(1)領域$R_n$に含まれる格子点($x$座標と$y$座標がともに整数である点)の数$S_n$を求めなさい.
(2)点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2n,\ 0)$,および関数$y$の頂点を結ぶ線分で囲まれた領域(境界線を含む)に含まれる格子点の数$T_n$を求めなさい.
(3)$\displaystyle \lim_{n \to \infty} \frac{T_n}{S_n}$を求めなさい.
奈良女子大学 国立 奈良女子大学 2016年 第2問
座標平面上に$3$点$\mathrm{A}(t,\ 1)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$がある.ここで,$t$は実数全体を動くものとする.三角形$\mathrm{ABC}$の重心を$\mathrm{D}$,外心を$\mathrm{E}$とする.次の問いに答えよ.

(1)点$\mathrm{D}$と点$\mathrm{E}$の座標を$t$を用いて表せ.
(2)線分$\mathrm{DE}$の長さの$2$乗を$t$を用いて表し,それを$f(t)$とおく.関数$y=f(t)$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフをかけ.
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2016年 第3問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$a=2$のとき$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
スポンサーリンク

「グラフ」とは・・・

 まだこのタグの説明は執筆されていません。