タグ「グラフの概形」の検索結果

8ページ目:全135問中71問~80問を表示)
帯広畜産大学 国立 帯広畜産大学 2013年 第2問
関数$\displaystyle f(x)=\frac{1}{2}x^3+ax^2+bx+c$で定義される曲線$y=f(x)$は,$3$点$(0,\ 0)$,$(2,\ 0)$,$(-2,\ 0)$を通る.また,曲線$y=f(x)$を$x$軸方向に$1$だけ移動した曲線を$y=g(x)$とする.ただし,$a,\ b,\ c$は実数とする.次の各問に答えよ.

(1)$a,\ b,\ c$の値を求めなさい.
(2)関数$y=f(x)$の増減表を作り,そのグラフの概形を図示しなさい.
(3)曲線$y=f(x)$と円$x^2+y^2=4$のすべての交点を求めなさい.
(4)連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq f(x) \\
y \geqq g(x)
\end{array} \right. \]
で示される領域を図示し,この領域の面積を求めなさい.
宇都宮大学 国立 宇都宮大学 2013年 第4問
関数$f(x)=\left\{ \begin{array}{ll}
-2x^2+2x & (x \geqq 0) \\
x^2+2x & (x<0)
\end{array} \right.$に対して,関数$F(x)$を$\displaystyle F(x)=\int_{-3}^x f(t) \, dt$と定め,曲線$y=F(x)$を$C$とする.このとき,次の問いに答えよ.

(1)関数$F(x)$の増減を調べて,$-3 \leqq x \leqq 2$の範囲で$y=F(x)$のグラフの概形をかけ.
(2)曲線$C$上の$2$点$\mathrm{P}$と$\mathrm{Q}$における$C$の接線の傾きが等しいとし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$a,\ b$とする.$a$が$0<a<1$の範囲を動くとき,$b$のとりうる値の範囲を求めよ.ただし,$b<0$とする.
(3)曲線$C$上の$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$における$C$の接線の傾きが等しいとする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$x$座標をそれぞれ$a,\ b,\ c$とし,$a>b>c$であるとする.このとき,$a$のとりうる値の範囲を求め,さらに$a-b=b-c$であるときの$a$の値を求めよ.
電気通信大学 国立 電気通信大学 2013年 第1問
関数$\displaystyle f(x)=\sin x+\frac{1}{2 \sin x} \ (0<x<\pi)$について以下の問いに答えよ.

(1)$f^\prime(x)=0$となる$x$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.さらに,$y=f(x)$のグラフの概形をかけ.ただし,グラフの凹凸は調べなくてよい.
(3)$0<x<\pi$のとき,
\[ \frac{d}{dx}\{\log (1-\cos x)-\log (1+\cos x)\} \]
を求めよ.
(4)定積分$\displaystyle \int_{\frac{\pi}{4}}^{\frac{3}{4}\pi}f(x) \, dx$を求めよ.
三重大学 国立 三重大学 2013年 第4問
関数$y=xe^{-2x}$を考える.

(1)$y^\prime,\ y^{\prime\prime}$を求めよ.
(2)この関数の$0 \leqq x \leqq 2$における増減,凹凸を調べ,グラフの概形をかけ.
三重大学 国立 三重大学 2013年 第4問
$y^2=(x-2)^2(x+1)$で決まる曲線を$C$とする.以下の問いに答えよ.

(1)関数$y=(x-2) \sqrt{x+1}$の増減を調べ,関数のグラフの概形をかけ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$で囲まれる部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第7問
$-2 \leqq x \leqq 2$上で関数$f(x),\ g(x)$を
\[ f(x)=\frac{1}{2}-\frac{1}{4}|x|,\quad g(x)=\int_{-2}^x f(t) \, dt \]
によって定める.

(1)$y=f(x)$のグラフの概形を描け.
(2)$g(x)$を計算し,$y=g(x)$のグラフの概形を描け.
(3)$y=g(x)$の逆関数$y=g^{-1}(x)$を求め,そのグラフの概形を描け.
(4)$\displaystyle \int_0^1 (g^{-1}(x))^2 \, dx$を計算せよ.
(5)$y=g^{-1}(x)$は$\displaystyle x=\frac{1}{2}$で微分可能であることを示せ.
群馬大学 国立 群馬大学 2013年 第2問
$a$は$a>1$を満たす定数とし,$2$つの関数$f(x)$と$g(x)$を$f(x)=|x^2-a|$,$g(x)=-|x+1|+a$とする.

(1)$y=f(x)$のグラフの概形を書け.
(2)$y=g(x)$のグラフの概形を書け.
(3)$y=f(x)$と$y=g(x)$のグラフの交点が$2$個,$3$個,$4$個になるときの$a$の範囲または値をそれぞれ求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第5問
$f(x)=2 \sin x+\cos 2x (0 \leqq x \leqq 2\pi)$とする.

(1)関数$y=f(x)$の極値を求めてグラフの概形をかけ.ただし,凹凸は調べなくてよい.
(2)方程式$f(x)=0$の解を$\alpha,\ \beta (0 \leqq \alpha<\beta \leqq 2\pi)$とする.$\sin \alpha$,$\cos \alpha$,$\sin \beta$,$\cos \beta$の値を求めよ.
(3)$y=f(x)$のグラフと$x$軸で囲まれた図形で,第$4$象限に含まれる部分の面積を求めよ.
東北学院大学 私立 東北学院大学 2013年 第3問
関数$y=-x^3+x$について以下の問いに答えよ.

(1)極値を求めグラフの概形を描け.
(2)グラフ上の点$\mathrm{P}(t,\ -t^3+t) (t>0)$における接線とグラフとの交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の接線が点$(0,\ 2)$を通るとき線分$\mathrm{PQ}$の長さを求めよ.
東北学院大学 私立 東北学院大学 2013年 第4問
関数$f(x)=x^2e^{-x}$について以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めグラフの概形を描け(変曲点は求めなくてよい).

(3)$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
スポンサーリンク

「グラフの概形」とは・・・

 まだこのタグの説明は執筆されていません。