タグ「グラフの概形」の検索結果

7ページ目:全135問中61問~70問を表示)
龍谷大学 私立 龍谷大学 2014年 第4問
関数$f(x)=(x^2-2)^2$について考える.

(1)$f(x)$の増減と極値を調べ,それをもとに$y=f(x)$のグラフの概形を描きなさい.
(2)$x$軸と曲線$y=f(x)$で囲まれた部分を$y$軸のまわりに$1$回転してできる立体の体積を求めなさい.
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
大阪府立大学 公立 大阪府立大学 2014年 第4問
以下の問いに答えよ.

(1)関数$f(x)=|x|$が$x=0$において微分可能でないことを微分の定義に基づいて示せ.
(2)$y=x |x|$のグラフの概形を描け.
(3)$m$は自然数とする.関数$g(x)=x^m |x|$が$x=0$において微分可能であるか微分可能でないかを理由をつけて答えよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2014年 第1問
$f(x)=x^4-2x^3+2x+4$,$g(x)=-1-3 \sqrt{|x-1|}$とする.このとき,次の問いに答えよ.

(1)関数$y=f(x)$のグラフの概形を描け.ただし,変曲点に留意しなくてよい.
(2)$2$つの曲線$y=f(x)$と$y=g(x)$,および$2$つの直線$x=-1$と$x=2$で囲まれた図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2013年 第4問
関数$f(x)$を次のとおりに定める.
\[ f(x)=\left\{ \begin{array}{ll}
e^{-\frac{1}{1-x^2}} & (|x|<1 \text{のとき}) \\
0 & (|x| \geqq 1 \text{のとき})
\end{array} \right. \]

(1)$\displaystyle \lim_{x \to 1-0}f(x)$,$\displaystyle \lim_{x \to -1+0}f(x)$を求めよ.
(2)$\displaystyle K=\int_{-1}^1 f(t) \, dt$,$\displaystyle F(x)=\frac{1}{K} \int_{-1}^x f(t) \, dt$とする.このとき,$F(0)$を求めよ.
(3)関数$y=F(x)$の増減を調べ,グラフの概形をかけ.
(4)関数$y=F(x)-F(0)$が奇関数であることを示せ.
(5)定積分$\displaystyle \int_{-1}^2 F(x) \, dx$を求めよ.
弘前大学 国立 弘前大学 2013年 第2問
$a>0$となる定数$a$に対して,関数$\displaystyle f(x)=\frac{1}{3}x^3-a^2x-\frac{2}{3}a^3$とする.次の問いに答えよ.

(1)$y=|f(x)|$のグラフの概形をかけ.
(2)$-1 \leqq x \leqq 1$における関数$|f(x)|$の最大値を求めよ.
弘前大学 国立 弘前大学 2013年 第4問
$x \geqq 2$とし,区間$-1 \leqq t \leqq 1$における$f(t)=4t^3-x^2t$の最大値を$M(x)$で表す.このとき,次の問いに答えよ.

(1)$y=M(x)$のグラフの概形をかけ.
(2)曲線$y=M(x)$と$y$軸および$2$直線$\displaystyle y=\frac{8 \sqrt{3}}{9},\ y=10$で囲まれた部分の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第2問
関数$f(x)=x^3-3ax$について次の問いに答えよ.ただし,$a$は正の定数である.

(1)関数$y=f(x)$の増減,極値を調べ,そのグラフの概形をかけ.
(2)定数$k$が$0<k \leqq \sqrt{a}$の範囲にあるとき,$-k \leqq x \leqq 2k$における$f(x)$の最大値と最小値を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第4問
$x>0$のとき,以下の問いに答えよ.

(1)不等式$2 \sqrt{x}>\log x$を示せ.
(2)関数$\displaystyle y=\frac{1-\log x}{x^2}$の増減,極値,グラフの凹凸および変曲点を調べ,そのグラフの概形をかけ.ただし,必要があれば,(1)の結果を用いてよい.
香川大学 国立 香川大学 2013年 第1問
関数$f(x)=x^4+x^3$について,次の問に答えよ.

(1)この関数のグラフの概形をかけ.
(2)この関数のグラフ上の$3$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t,\ f(t))$,$\mathrm{R}(t+1,\ f(t+1))$を頂点とする三角形の面積$S(t)$を$t$の式で表せ.
(3)$S(t)$の最小値を求めよ.
スポンサーリンク

「グラフの概形」とは・・・

 まだこのタグの説明は執筆されていません。