タグ「グラフの概形」の検索結果

6ページ目:全135問中51問~60問を表示)
富山大学 国立 富山大学 2014年 第3問
次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示せ.
(2)$f(x)=x^2 \log x (x>0)$とおく.$\displaystyle \lim_{x \to +0}f(x)=0$を示せ.
(3)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(4)$\displaystyle I(t)=\int_t^2 f(x) \, dx (t>0)$とおく.このとき,$\displaystyle \lim_{t \to +0}I(t)$を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
関数$f(x)=e^{\sqrt{2} \sin x}$を考える.次の問いに答えよ.

(1)$0 \leqq x \leqq 2\pi$において,関数$f(x)$の増減,極値,グラフの凹凸および変曲点を調べ,グラフの概形をかけ.
(2)$a$を実数とする.関数$f(x)$の導関数を$f^\prime(x)$とするとき,$x$の方程式$f^\prime(x)=a$の$0 \leqq x \leqq 2\pi$における実数解の個数を求めよ.
富山大学 国立 富山大学 2014年 第3問
関数$f(x)$と$g(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
|x \log \abs{x|} & (x \neq 0) \phantom{\frac{[ ]}{2}} \\
0 \phantom{\frac{[ ]}{2}} & (x=0)
\end{array} \right. \]
\[ g(x)=-x^2+1 \]
により定める.このとき,次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示し,これを用いて$f(x)$は$x=0$で連続であることを示せ.
(2)$f(x)$の極値を求め,$y=f(x)$のグラフの概形をかけ.
(3)方程式$f(x)=g(x)$の解は$x=-1,\ 1$のみであることを示せ.
(4)$0<r<1$とする.曲線$y=f(x)$と曲線$y=g(x)$によって囲まれた図形のうち,$x \geqq r$の範囲の部分の面積を$S(r)$とおく.このとき,$\displaystyle \lim_{r \to +0} S(r)$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
高知大学 国立 高知大学 2014年 第1問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
高知大学 国立 高知大学 2014年 第4問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減を調べ,そのグラフの概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なく用いて良い.
(2)異なる自然数$m,\ n$の組で
\[ m^n=n^m \]
を満たすものをすべて求めよ.
(3)曲線$\displaystyle y=\frac{\log x}{x}$と直線$\displaystyle y=\frac{\log 2}{2}$で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2014年 第4問
関数$\displaystyle f(x)=\cos x-\frac{2}{3} \cos^3 x (0 \leqq x \leqq \pi)$について以下の問いに答えよ.

(1)$f^\prime(x)=0$となる$x$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$を求めよ.
スポンサーリンク

「グラフの概形」とは・・・

 まだこのタグの説明は執筆されていません。