タグ「グラフの概形」の検索結果

11ページ目:全135問中101問~110問を表示)
昭和薬科大学 私立 昭和薬科大学 2012年 第3問
$2$次関数$f(x)=x^2+ax$($a$は実数)に対し,$\displaystyle S(a)=\int_0^2 |f^\prime(x)| \, dx$で関数$S(a)$を定義する.

(1)$a=2$のとき,関数$y=|f^\prime(x)|$のグラフの概形を描きなさい.
(2)関数$S(a)$のグラフの概形を描きなさい.
青森公立大学 公立 青森公立大学 2012年 第3問
$x$の3次関数$f(x)=2x^3-3x^2$について,曲線$C_1:y=f(x)$と曲線$C_2:y=f(|x|)$を考える.次の問いに答えよ.

(1)曲線$C_1$のグラフを描け.
(2)$a$を実数とする.曲線$C_1$の接線のなかで点$(0,\ a)$を通る接線の本数を求めよ.
(3)曲線$C_2$のグラフの概形を描け.
(4)$b$は$\displaystyle b>\frac{1}{2}$を満たす実数とする.曲線$C_2$の接線のなかで点$(b,\ 4)$を通る接線の本数を求めよ.
広島市立大学 公立 広島市立大学 2012年 第4問
関数$\displaystyle f(x)=\frac{x}{x^2+2}$について,以下の問いに答えよ.

(1)関数$f(x)$の増減,極値,および$y=f(x)$のグラフの凹凸,変曲点を調べよ.さらに,このグラフの概形を描け.
(2)$\displaystyle F(x)=\int_x^{x+1}f(t) \, dt$とおく.$F(x)$の最大値とそのときの$x$の値を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第4問
関数$\displaystyle f(x)=\sin x+\frac{1}{2} \sin 2x$の定義域を$\displaystyle -\frac{\pi}{2} \leqq x \leqq \pi$とする.次の問に答えなさい.

(1)$f(x)>0$となる$x$の範囲と$f^\prime(x)>0$となる$x$の範囲を,それぞれ求めなさい.
(2)関数$y=f(x)$のグラフの概形を書きなさい.ただし,グラフの凹凸は調べなくてよい.
(3)$\displaystyle \int_{-\frac{\pi}{2}}^\pi |f(x)| \, dx$の値を求めなさい.
富山県立大学 公立 富山県立大学 2012年 第3問
$a$は定数で$a>1$とする.関数$\displaystyle f(x)=\frac{a}{1+(a-1)e^{-x}}$について,次の問いに答えよ.

(1)不等式$0<f(x)<a$が成り立つことを示せ.また,極限$\displaystyle \lim_{x \to -\infty}f(x)$および$\displaystyle \lim_{x \to \infty}f(x)$を求めよ.
(2)$a=3$のとき,$y=f(x)$のグラフの概形を,極値および変曲点を調べてかけ.
(3)$p$は定数で$p<0$とする.$a=3$のとき,定積分$\displaystyle I(p)=\int_p^0 f(x) \, dx$を求めよ.また,極限$\displaystyle \lim_{p \to -\infty}I(p)$を求めよ.
島根大学 国立 島根大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{\sqrt{x^2+1}}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(2)関数$y=\log (x+\sqrt{x^2+1})-ax$が極値をもつように,定数$a$の値の範囲を定めよ.
(3)極値$\displaystyle \lim_{n \to \infty} \left( \frac{1}{\sqrt{1^2+n^2}} +\frac{1}{\sqrt{2^2+n^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$を求めよ.
島根大学 国立 島根大学 2011年 第4問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{\sqrt{x^2+1}}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(2)関数$y=\log (x+\sqrt{x^2+1})-ax$が極値をもつように,定数$a$の値の範囲を定めよ.
(3)極値$\displaystyle \lim_{n \to \infty} \left( \frac{1}{\sqrt{1^2+n^2}} +\frac{1}{\sqrt{2^2+n^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}}\right)$を求めよ.
香川大学 国立 香川大学 2011年 第4問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
香川大学 国立 香川大学 2011年 第5問
$a>1$のとき,連立不等式
\[ \sqrt{a^2-x^2} \leqq y \leqq a^2-x^2, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_1$,連立不等式
\[ a^2-x^2 \leqq y \leqq \sqrt{a^2-x^2}, x \geqq 0, y \geqq 0 \]
で表せる領域を$D_2$とする.このとき,次の問いに答えよ.

(1)$x \geqq 0,\ y \geqq 0$における,曲線$y=\sqrt{a^2-x^2}$と曲線$y=a^2-x^2$の交点をすべて求めよ.
(2)$x \geqq 0,\ y \geqq 0$において,2つの曲線$y=\sqrt{a^2-x^2},\ y=a^2-x^2$のグラフの概形をかき,$D_1,\ D_2$を図示せよ.
(3)$D_1,\ D_2$を$x$軸のまわりに1回転させてできる立体の体積をそれぞれ$V_1,\ V_2$とするとき,$V_1-V_2$を求めよ.
(4)$V_1<V_2$をみたす$a$の範囲を求めよ.
鳥取大学 国立 鳥取大学 2011年 第4問
$x$の関数$f(x)$と$F(x)$を
\[ f(x)=\frac{1}{x^2+1},\quad F(x)=\int_0^x f(t) \, dt \]
により定める.このとき,次の問いに答えよ.

(1)関数$f(x)$の増減,凹凸を調べ,$y=f(x)$のグラフの概形を描け.
(2)$\displaystyle F \left( \frac{1}{\sqrt{3}} \right)$の値を求めよ.
(3)実数$x,\ y$が$|x|<1,\ |y|<1$を満たすとき
\[ F \left( \frac{x+y}{1-xy} \right) =F(x)+F(y) \]
が成り立つことを示せ.
(4)$F(2-\sqrt{3})$の値を求めよ.
スポンサーリンク

「グラフの概形」とは・・・

 まだこのタグの説明は執筆されていません。