タグ「キク」の検索結果

4ページ目:全39問中31問~40問を表示)
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
九州産業大学 私立 九州産業大学 2012年 第3問
$a,\ b$を定数とする.$2$次関数$f(x)=x^2+ax+b$に対して,$1$次関数$g(x)$が$f(x)=(x-2)g(x)$を満たしており,$g(2)=3$である.放物線$y=f(x)$上の点$(2,\ f(2))$における接線を$\ell$とする.このとき

(1)定数$a,\ b$の値は$a=[アイ]$,$b=[ウエ]$である.
(2)直線$\ell$の方程式は$y=[オ]x-[カ]$である.
(3)直線$\ell$,直線$y=g(x)$および$x$軸で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.

(4)放物線$y=f(x)$と直線$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コサ]}{[シ]}$である.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
近畿大学 私立 近畿大学 2012年 第3問
下図の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$の$1$辺の長さは$1$である.線分$\mathrm{AH}$の中点を$\mathrm{P}$,線分$\mathrm{HC}$を$1:2$に内分する点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{c}$とおく.
(図は省略)

(1)$\displaystyle \overrightarrow{\mathrm{PQ}}=\frac{[ア]}{[イ]} \overrightarrow{a}+\frac{[ウ]}{[エ]} \overrightarrow{b}+\frac{[オ]}{[カ]} \overrightarrow{c}$である.

(2)線分$\mathrm{CG}$を$3:1$に内分する点を$\mathrm{R}$とする.線分$\mathrm{BR}$上に点$\mathrm{S}$を,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{DS}}$が垂直になるようにとると,
\[ \overrightarrow{\mathrm{DS}}=\overrightarrow{a}-\frac{[キク]}{[ケコ]} \overrightarrow{b}+\frac{[サ]}{[シ]} \overrightarrow{c} \]
である.
(3)次に,点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{G}$,$\mathrm{F}$を含む平面上に点$\mathrm{T}$を,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{DT}}$が垂直になるようにとる.線分$\mathrm{DT}$の長さは
\[ \overrightarrow{\mathrm{DT}}=\overrightarrow{a}-\frac{[ス]}{[セ]} \overrightarrow{b}-\frac{[ソ]}{[タ]} \overrightarrow{c} \]
のとき,最小値$\displaystyle \frac{\sqrt{[チツ]}}{[テ]}$をとる.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
杏林大学 私立 杏林大学 2012年 第4問
座標平面上の点$\mathrm{P}(x,\ y)$が$t \geqq 0$に対して
\[ x=1-e^{-3t},\quad y=8-3t-8e^{-3t} \]
で表されるとき,以下の問いに答えよ.

(1)$t \to \infty$のとき$x$の極限値は
\[ \lim_{t \to \infty} x=[ア] \]
であり,$t=0$のとき
\[ \frac{dy}{dt}=[イウ] \]
となる.また,任意の$t$に対して

$\displaystyle \frac{d^2 x}{dt^2}+[エ] \frac{dx}{dt}=[オ]$,

$\displaystyle \frac{d^2 y}{dt^2}+[カ] \frac{dy}{dt}=[キク]$

が成り立つ.
(2)$\displaystyle \frac{dy}{dx}=0$となる$t$の値を$\alpha$とすると,$e^\alpha=[ケ]$となる.このときの$x$の値を$\beta$とすると,$\displaystyle \beta=\frac{[コ]}{[サ]}$であり,$y$の値は$[シ]-[ス] \alpha$である.
(3)$0 \leqq t \leqq \alpha$に対して点$\mathrm{P}$の描く曲線と,直線$x=\beta$および$x$軸で囲まれた部分の面積は$\displaystyle \frac{[セソ]}{[タチ]}+\frac{[ツ]}{[テ]} \alpha$となる.
北海道薬科大学 私立 北海道薬科大学 2011年 第1問
次の各設問に答えよ.

(1)$\sqrt{10}$の整数部分を$a$,小数部分を$b$とすると,$b^2+2ab$の値は$[ア]$である.
(2)方程式$x^2-4x-8=4 |x-2|$を解くと,$x$の値は$[イ]$と$[ウエ]$である.
(3)$x=\log_{5}50+\log_{25}400-3$のとき,$\sqrt[3]{5^x}=[オ]$である.
(4)袋の中に赤玉$5$個と白玉$5$個が入っている.この袋の中から同時に玉を$3$個取り出すとき,赤玉$2$個,白玉$1$個が取り出される確率は$\displaystyle \frac{[カ]}{[キク]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第1問
関数
\[ y=f(x)=\left\{ \begin{array}{ll}
-x^2-12x & (x<0) \\
3x^2-12x+a & (0 \leqq x)
\end{array} \right. \]
を考える.関数$y=f(x)$の区間$0 \leqq x \leqq 6$における最小値が$-12$であるという.このとき,次の問に答えなさい.

(1)$a$の値は$[ア]$である.
(2)$f(x)=0$となる$x$の値を小さい方から並べると$x=[イウエ],\ [オ],\ [カ]$である.
(3)曲線$y=f(x)$の点$\mathrm{P}(k,\ -k^2-12k)$($k<0$とする)における接線$\ell$が点$(-1,\ 15)$を通るという.このとき,$k$の値は$[キク]$である.
(4)接線$\ell$と曲線$y=f(x)$の共有点は点$\mathrm{P}$と$([ケ],\ [コサ])$で,接線$\ell$と曲線$y=f(x)$で囲まれる部分の面積は$[シス]$である.
西南学院大学 私立 西南学院大学 2010年 第1問
次の問に答えよ.

(1)方程式
\[ \frac{x+4}{x+6}+\frac{x+6}{x+8}=\frac{x+2}{x+4}+\frac{x+8}{x+10} \]
が成立するとき,$x$の値は,$[アイ]$である.
(2)$2$次関数$y=ax^2+bx+c$のグラフが$y=x^2-8x+9$のグラフと点$(1,\ -5)$に関して対称であるとき,$a,\ b,\ c$の値は,それぞれ,$[ウエ]$,$[オカ]$,$[キク]$である.
スポンサーリンク

「キク」とは・・・

 まだこのタグの説明は執筆されていません。