タグ「キク」の検索結果

3ページ目:全39問中21問~30問を表示)
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)$\displaystyle \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}+1}$を変形すると,$\displaystyle \frac{\sqrt{6}+[ア] \sqrt{3}-[イ] \sqrt{2}-[ウ]}{4}$となる.
(2)$2$次方程式$x^2+3x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^3,\ \beta^3$を$2$つの解とする$2$次方程式を求めると,$x^2-[エ]x+[オカ]=0$となる.
(3)$x>8$のとき$\displaystyle \frac{4x^2-4x-223}{2x-16}$の最小値は,$[キク]$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第1問
次の各設問に答えよ.

(1)$a,\ b$が有理数である$x^2+ax+b=0$の一つの解が$2+\sqrt{3}$であるとき方程式
\[ ax^2-7x+2b=0 \]
の解は$\displaystyle x=[アイ],\ \frac{[ウ]}{[エ]}$である.
(2)$x$を実数とすると$\displaystyle x^2+\frac{100}{x^2+1}$の最小値は$[オカ]$であり,そのときの$x$の値は$[キク],\ [ケ]$である.
(3)$\mathrm{RISUKU}$の$6$文字をバラバラにして一列に並べるとき,$\mathrm{KUSURI}$という文字になる確率は$\displaystyle \frac{[コ]}{[サシス]}$である.
(4)$\displaystyle \int_{-3}^3 (x+1) |x-2| \, dx$の値は$\displaystyle \frac{[セソ]}{[タ]}$である.
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
東京薬科大学 私立 東京薬科大学 2013年 第1問
次の$[ ]$に適当な数,式を入れよ.ただし,$*$については,$+,\ -$の$1$つが入る.

(1)$2$次方程式$x^2-4x+2=0$の$2$つの解を$\alpha,\ \beta (\alpha>\beta)$とすると,
\[ \alpha^2+\beta^2=[アイ],\quad \alpha^2-\beta^2=[ウ] \sqrt{[エ]},\quad \alpha^3+\beta^3=[オカ] \]
である.
(2)$\displaystyle \left( \frac{5}{2} \right)^{100}$の整数部分の桁数は$[キク]$である.ただし,$\log_{10}2=0.3010$とせよ.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.$\displaystyle S_n=\frac{3}{2}n^2-\frac{5}{2}n$であるとき,$a_n=[$*$ケ]n+[$*$コ]$である.
(4)$1$枚の硬貨を$5$回投げるとき,表が$3$回出る確率は$\displaystyle \frac{[サ]}{[シス]}$であり,$3$度目の表が$5$回目の試行で出る確率は$\displaystyle \frac{[セ]}{[ソタ]}$である.
東京医科大学 私立 東京医科大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)数列$\{a_n\}$が関係式
\[ a_1=1,\quad a_{n+1}=\frac{(n+1)a_n}{(3n+1)a_n+n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,$\displaystyle a_{200}=\frac{[ア]}{[イウエ]}$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$かつ$\displaystyle \cos \theta=\frac{1}{8}$のとき,$\displaystyle \sin \frac{3 \theta}{2}=\frac{[オ] \sqrt{[カ]}}{[キク]}$である.
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
東京医科大学 私立 東京医科大学 2013年 第4問
関数$\displaystyle f(x)=\frac{1+4x}{1+\sqrt{x}} (x \geqq 0)$を考える.

(1)関数$f(x)$は$\displaystyle x=\frac{[ア]}{[イ]}-\sqrt{[ウ]}$のとき最小値$[エ] \sqrt{[オ]}-[カ]$をとる.
(2)座標平面上の曲線$C:y=f(x) (x \geqq 0)$と$x$軸,$y$軸および直線$x=1$とで囲まれた部分の面積を$S$とすれば
\[ S=\frac{[キク]}{[ケ]}-[コサ] \log 2 \]
である.ただし,対数は自然対数とする.
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
東京理科大学 私立 東京理科大学 2012年 第1問
$a=\sqrt{7}+\sqrt{5},\ b=\sqrt{7}-\sqrt{5}$とおく.

(1)$\displaystyle \frac{b}{a}=[ア]-\sqrt{[イウ]}$,$\displaystyle \frac{a}{b} = [エ]+\sqrt{[オカ]}$である.

(2)$\displaystyle \frac{b}{a},\ \frac{a}{b}$を解にもつ$2$次方程式は$x^2-[キク]x+[ケ]=0$と書くことができる.
(3)$A=\left( \begin{array}{cc}
a & -b \\
\displaystyle\frac{1}{a} & \displaystyle\frac{1}{b}
\end{array} \right)$とおくとき,$A$の逆行列$A^{-1}$は
\[ A^{-1}=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{7}}{[コサ]}+\frac{\sqrt{5}}{[シス]} & \displaystyle\frac{\sqrt{7}}{[セソ]}-\frac{\sqrt{5}}{[タチ]} \\ \\
-\displaystyle\frac{\sqrt{7}}{[ツテ]}+\frac{\sqrt{5}}{[トナ]} & \displaystyle\frac{\sqrt{7}}{[ニヌ]}+\frac{\sqrt{5}}{[ネノ]}
\end{array} \right) \]
北海道薬科大学 私立 北海道薬科大学 2012年 第1問
次の各設問に答えよ.

(1)放物線$y=ax^2+bx-11$が頂点$(2,\ -3)$をもつとすると,$a=[アイ]$,$b=[ウ]$である.
(2)$\displaystyle \frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}=\frac{1}{18}$を満たす$x$の値は$[エオ]$,$[カ]$である.
(3)$\log_{\frac{1}{3}} \sqrt{27}+\log_{27}9 \sqrt{3}$を計算すると,$\displaystyle \frac{[キク]}{[ケ]}$である.
(4)$\displaystyle \int_{-3}^1 |(x+1)(x-3)| \, dx$の値は$[コサ]$である.
スポンサーリンク

「キク」とは・・・

 まだこのタグの説明は執筆されていません。