タグ「キクケ」の検索結果

1ページ目:全4問中1問~10問を表示)
金沢工業大学 私立 金沢工業大学 2016年 第4問
$2$つの関数$f(x)=x^3+ax^2+bx$,$g(x)=-x^2+cx+3$について,曲線$y=f(x)$,$y=g(x)$は点$(1,\ 0)$で同じ接線をもつとする.ただし,$a,\ b,\ c$は定数とする.

(1)$a=[アイ]$,$b=[ウ]$,$c=[エオ]$である.
(2)$2$つの曲線$y=f(x)$,$y=g(x)$の点$(1,\ 0)$以外の共有点の座標は$([カ],\ [キクケ])$である.
(3)$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コ]}{[サ]}$である.
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第3問
さいころを$3$回投げて$1$回目の数を$a$,$2$回目の数を$b$,$3$回目の数を$c$とおく.このとき,次の問に答えなさい.

(1)$a+b+c=6$となる確率は$\displaystyle \frac{[ア]}{[イウエ]}$である.

(2)$abc \geqq 125$となる確率は$\displaystyle \frac{[オカ]}{[キクケ]}$である.

(3)$\displaystyle \frac{b}{a}$の期待値は$\displaystyle \frac{[コサシ]}{[スセソ]}$である.

(4)$\displaystyle \frac{bc}{a}$が整数となる確率は$\displaystyle \frac{[タチ]}{[ツテ]}$である.
西南学院大学 私立 西南学院大学 2011年 第2問
次の問に答えよ.

(1)下図のように,正方形の各辺を$6$等分し,各辺に平行線を引く.これらの平行線によって作られる正方形でない長方形の総数は$[キクケ]$個である.
(図は省略)
(2)円周を$10$等分する$10$個の点がある.これらのうちの$3$個の点を頂点とする三角形を考える.直角三角形は全部で$[コサ]$個あり,また鈍角三角形は全部で$[シス]$個ある.
スポンサーリンク

「キクケ」とは・・・

 まだこのタグの説明は執筆されていません。