タグ「ガウス記号」の検索結果

1ページ目:全37問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第5問
$k$を正の整数とし,$10$進法で表された小数点以下$k$桁の実数
\[ 0.a_1a_2 \cdots a_k=\frac{a_1}{10}+\frac{a_2}{{10}^2}+\cdots +\frac{a_k}{{10}^k} \]
を$1$つとる.ここで,$a_1,\ a_2,\ \cdots,\ a_k$は$0$から$9$までの整数で,$a_k \neq 0$とする.

(1)次の不等式をみたす正の整数$n$をすべて求めよ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{n}-{10}^k<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(2)$p$が$5 \cdot {10}^{k-1}$以上の整数ならば,次の不等式をみたす正の整数$m$が存在することを示せ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{m}-p<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(3)実数$x$に対し,$r \leqq x<r+1$をみたす整数$r$を$[x]$で表す.$\sqrt{s}-[\sqrt{s}]=0.a_1 a_2 \cdots a_k$をみたす正の整数$s$は存在しないことを示せ.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
実数$x$に対して,$[x]$は$x$以下の最大の整数を表すものとする.

(1)数列$\displaystyle a_1=\frac{1}{[\sqrt{1}]},\ a_2=\frac{2}{[\sqrt{2}]},\ a_3=\frac{3}{[\sqrt{3}]},\ \cdots,\ a_n=\frac{n}{[\sqrt{n}]},\ \cdots$としたとき,$1$から$99$までの数$n$のうち$a_n$が整数になるものは$[$70$][$71$]$個である.また,$a_n=10$と最初になるのは$n=[$72$][$73$]$のときである.さらに,$\displaystyle S_n=\sum_{i=1}^n a_i$としたとき,$S_{99}=[$74$][$75$][$76$]$である.
(2)数列$\displaystyle b_1=\frac{1}{[\sqrt[3]{1}]},\ b_2=\frac{2}{[\sqrt[3]{2}]},\ b_3=\frac{3}{[\sqrt[3]{3}]},\ \cdots,\ b_n=\frac{n}{[\sqrt[3]{n}]},\ \cdots$としたとき,$1$から$124$までの数$n$のうち$b_n$が整数になるものは$[$77$][$78$]$個である.また,$b_n=10$と最初になるのは$n=[$79$][$80$]$のときである.さらに,$\displaystyle T_n=\sum_{i=1}^n b_i$としたとき,$T_{124}=\kakkofour{$81$}{$82$}{$83$}{$84$}$である.
京都府立大学 公立 京都府立大学 2016年 第1問
$\alpha,\ \beta$を正の無理数とする.$2$つの集合$A,\ B$を
\[ A=\{ \, [n \alpha] \;|\; n=1,\ 2,\ 3,\ \cdots \, \},\quad B=\{ \, [n \beta] \;|\; n=1,\ 2,\ 3,\ \cdots \, \} \]
で定める.集合$C$を$A$と$B$の共通部分とする.集合$D$を$A$と$B$の和集合とする.$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}=1$のとき以下の問いに答えよ.ただし,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.

(1)$C$は空集合となることを示せ.
(2)$E=\{ \, n \;|\; n=1,\ 2,\ 3,\ \cdots,\ 99 \, \}$のとき,$E$は$D$の部分集合となることを示せ.
岐阜大学 国立 岐阜大学 2015年 第5問
$p$を$2$以上の整数とし,$a=p+\sqrt{p^2-1}$,$b=p-\sqrt{p^2-1}$とする.以下の問に答えよ.

(1)$a^2+b^2$と$a^3+b^3$がともに偶数であることを示せ.
(2)$n$を$2$以上の整数とする.$a^n+b^n$が偶数であることを示せ.
(3)正の整数$n$について,$[a^n]$が奇数であることを示せ.ただし,実数$x$に対して,$[x]$は$m \leqq x<m+1$を満たす整数$m$を表す.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
福島大学 国立 福島大学 2015年 第5問
実数$x$をこえない最大の整数を$[x]$とし,$\langle x \rangle=x-[x]$とする.また,$a$を定数として次の方程式を考える.
\[ 4 \langle x \rangle^2-\langle 2x \rangle-a=0 \]
ただし,$\langle x \rangle^2$は$\langle x \rangle$の二乗を表すとする.

(1)$x=1.7$のとき$\langle x \rangle$および$\langle 2x \rangle$を求めなさい.
(2)$\alpha$が上の方程式の解ならば,任意の整数$n$について$\alpha+n$も解であることを示しなさい.
(3)上の方程式が解を持つような実数$a$の範囲を求めなさい.
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(m)$が最大となるような$m$を求めよ.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第2問
$n$を自然数,$m$を$2n$以下の自然数とする.$1$から$n$までの自然数が$1$つずつ記されたカードが,それぞれの数に対して$2$枚ずつ,合計$2n$枚ある.この中から,$m$枚のカードを無作為に選んだとき,それらに記された数がすべて異なる確率を$P_n(m)$と表す.ただし$P_n(1)=1$とする.さらに,
\[ E_n(m)=mP_n(m) \]
とおく.このとき以下の各問いに答えよ.

(1)$P_3(2),\ P_3(3),\ P_3(4)$を求めよ.
(2)$E_{10}(3),\ E_{10}(4),\ E_{10}(5)$の中で最大のものはどれか.
(3)自然数$n$に対し,
\[ E_n(m)>E_n(m+1) \]
を満たす自然数$m$の最小値を$f(n)$とするとき,$f(n)$を$n$を用いて表せ.ただし,ガウス記号$[ \quad ]$を用いてよい.ここで,実数$x$に対して,$x$を超えない最大の整数を$[x]$と表す.
愛知工業大学 私立 愛知工業大学 2015年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2x-7<0$をみたす実数$x$の範囲は$[ア]$である.また,実数$x$に対して,$x$を超えない最大の整数を$[x]$とすると,${[x]}^2-2[x]-7<0$をみたす実数$x$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=1,\quad a_2=\frac{4}{3},\quad 3a_{n+2}-4a_{n+1}+a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,数列$\{a_{n+1}-pa_n\}$が公比$q$の等比数列になるような定数$p,\ q$の組は$(p,\ q)=[ウ]$であり,一般項$a_n$は$a_n=[エ]$である.
(3)$\displaystyle \frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sqrt{3}-2$となるのは$\tan \theta=[オ]$のときであり,これをみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$の値は$\theta=[カ]$である.
(4)$a$を実数とし,$\displaystyle f(a)=\int_{-1}^2 {(x-a |x|)}^2 \, dx$とする.$f(a)$は$a=[キ]$のとき,最小値$[ク]$をとる.
(5)$\tan x=t$とおくとき,$\sin 2x$を$t$で表すと$\sin 2x=[ケ]$である.また,$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx=[コ]$である.

\mon[(注)] 次の$(6),\ (7)$は選択問題である.

(6)大小$2$つのさいころを投げて,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$2$次方程式$x^2+ax+b=0$が$2$つの異なる実数解をもつ確率は$[サ]$,重解をもつ確率は$[シ]$,実数解をもたない確率は$[ス]$である.
(7)平面上で,半径$3$の円$C_1$と半径$5$の円$C_2$が点$\mathrm{P}$で外接している.$1$本の直線が$\mathrm{P}$と異なる点$\mathrm{Q}$,$\mathrm{R}$で円$C_1,\ C_2$とそれぞれ接しているとき,$\mathrm{QR}=[セ]$である.また,直線$\mathrm{QP}$と円$C_2$との,$\mathrm{P}$と異なる交点を$\mathrm{S}$とするとき,$\mathrm{SR}=[ソ]$である.
スポンサーリンク

「ガウス記号」とは・・・

 まだこのタグの説明は執筆されていません。