タグ「カキ」の検索結果

5ページ目:全54問中41問~50問を表示)
九州産業大学 私立 九州産業大学 2013年 第3問
関数$f(x)=|x^2-2x-3|$と,曲線$C:y=f(x)$,直線$\ell:y=x+1$について考える.

(1)曲線$C$と$x$軸との交点の$x$座標は,小さい順に$[アイ]$,$[ウ]$である.
(2)関数$f(x)$の$-2 \leqq x \leqq 2$における最大値は$[エ]$であり,最小値は$[オ]$である.
(3)曲線$C$と$x$軸により囲まれた部分の面積は$\displaystyle \frac{[カキ]}{[ク]}$である.

(4)曲線$C$と直線$\ell$との交点の$x$座標は,小さい順に$[ケコ]$,$[サ]$,$[シ]$である.

(5)曲線$C$と直線$\ell$により囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[スセ]}{[ソ]}$である.
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第1問
関数$y=1-x^2$,$y=4+3x-x^2$を考える.このとき,次の問に答えなさい.

(1)不等式$0 \leqq y \leqq 1-x^2$で表される領域の面積は$\displaystyle \frac{[ア]}{[イ]}$である.また,不等式
\[ y \geqq 1-x^2,\quad y \leqq 4+3x-x^2,\quad y \geqq 0 \]
で表される領域の面積は$\displaystyle \frac{[ウエ]}{[オ]}$である.
(2)曲線$y=1-x^2$上の点$\mathrm{P}(k,\ 1-k^2)$における接線を$\ell$とおく.このとき接線$\ell$が曲線$y=4+3x-x^2$と異なる$2$点で交わるような$k$の値の範囲は$\displaystyle \frac{[カキ]}{[ク]}<k$である.また,このとき交点の$x$座標の値を$\alpha$,$\beta$とおくと
\[ \alpha+\beta=[ケ]+[コ]k,\quad \alpha\beta=[サシ]+k^{[ス]} \]
である.
(3)接線$\ell$と曲線$y=4+3x-x^2$で囲まれる領域の面積が$\displaystyle \frac{125}{6}$となる$k$の値は$\displaystyle \frac{[セ]}{[ソ]}$である.
北海道薬科大学 私立 北海道薬科大学 2012年 第2問
次の各設問に答えよ.

(1)空間内に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 4)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面上に原点$\mathrm{O}$から垂線を下ろし,この平面との交点を$\mathrm{P}$とする.
\[ \overrightarrow{\mathrm{OP}}=a \overrightarrow{\mathrm{OA}}+b \overrightarrow{\mathrm{OB}}+c \overrightarrow{\mathrm{OC}} \quad (a,\ b,\ c \text{は実数}) \]
とすると$a+b+c=[ア]$となる.また

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=[イウ] a+[エ] b=[オ]$

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AC}}=[カキ] a+[クケ] c=[コ]$

となる.よって,点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[サ]}{[シ]},\ \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right)$となる.
(2)$4$個のさいころを同時に投げるとき,出た目の積が偶数になる確率は$\displaystyle \frac{[チツ]}{[テト]}$である.また,出た目の積が偶数になる確率が$0.994$以上になるには,同時に投げるさいころの数は最低$[ナ]$個必要である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
法政大学 私立 法政大学 2012年 第4問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.
$t$を正の定数とする.曲線$y=x^3-x$を$C$,$C$上の点$\mathrm{P}(t,\ t^3-t)$における接線を$\ell$とする.$\ell$の方程式は
\[ y=\left( [ア] t^2-[イ] \right) x-[ウ] t^3 \]
である.
$C$と$\ell$の,$\mathrm{P}$以外の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エオ] t$である.
$\mathrm{Q}$における$C$の接線を$m$とすると,$m$の方程式は
\[ y=\left( [カキ] t^2-[イ] \right)x+[クケ] t^3 \]
である.
$C$と$m$の,$\mathrm{Q}$以外の共有点を$\mathrm{R}$とすると,$\mathrm{R}$の$x$座標は$[コ] t$であり,
\[ \overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=18 \left( [サシ] t^6-[スセ] t^4+[ソ] t^2 \right) \]
となる.ここで,
\[ f(t)=\frac{\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}}{18t^6} \]
とおくと,$\displaystyle t=\frac{[タ] \sqrt{[チツ]}}{[チツ]}$のとき,$f(t)$は最小値$\displaystyle \frac{[テト]}{[ナ]}$をとる.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
北海道薬科大学 私立 北海道薬科大学 2011年 第3問
関数$f(x)=x^3+ax^2+bx+28$($a,\ b$は定数)がある.曲線$y=f(x)$上の点$(2,\ f(2))$における接線の方程式が$y=15x$であるとき,次の設問に答えよ.

(1)$a$の値は$[ア]$,$b$の値は$[イウ]$である.
(2)$f(x)$は
$x=[エオ]$のとき,極大値$[カキ]$
$x=[ク]$のとき,極小値$[ケコ]$
をとる.
(3)$0 \leqq x \leqq 2$の範囲では,$f(x)$の最大値は$[サシ]$,最小値は$[スセ]$である.
スポンサーリンク

「カキ」とは・・・

 まだこのタグの説明は執筆されていません。