タグ「カキ」の検索結果

4ページ目:全54問中31問~40問を表示)
杏林大学 私立 杏林大学 2014年 第1問
$[シ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

$n$を$100$以下の自然数とし,$n$の約数の個数を$f(n)$,空集合を$\phi$とする.

(1)$f(48)=[アイ]$であり,$f(n)=9$を満たす最小の自然数は$n=[ウエ]$である.$f(n)=5$を満たす$n$の個数は$[オ]$個であり,$f(n)=6$を満たす$n$の個数は$[カキ]$個である.
(2)$f(n)$の最大値は$[クケ]$である.したがって,$f(f(n))>4$を満たす最小の自然数は$n=[コサ]$となる.
(3)$f(n)=2$を満たす$100$以下の自然数$n$の集合を$A$,$100$以下の素数の集合を$B$とすると,$[シ]$が成り立つ.

$[シ]$の解答群
\mon[$①$] $A \in B$
\mon[$②$] $B \in A$
\mon[$③$] $A=B$
\mon[$④$] $A \subset B$かつ$A \neq B$
\mon[$⑤$] $B \subset A$かつ$A \neq B$
\mon[$⑥$] $A \cap B=\phi$
\mon[$④chi$] $A \cap B \neq \phi$かつ$A \neq A \cup B \neq B$
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
玉川大学 私立 玉川大学 2014年 第1問
$[ア]$~$[ツ]$を埋めよ.

(1)次を計算せよ.
\[ 3+\frac{1}{3+\displaystyle\frac{1}{3+\displaystyle\frac{1}{3}}}=\frac{[アイウ]}{[エオ]},\quad 3 \times 2 \div 3^{-1}=[カキ] \]
(2)空欄を埋めよ.
\[ \frac{\sqrt{2}+2i}{1-\sqrt{2}i}=-\frac{\sqrt{[ク]}}{[ケ]}+\frac{[コ]}{[サ]}i \]
(3)$\mathrm{A}$君と,$\mathrm{A}$君の姉の年齢の和は$28$,積は$180$である.$\mathrm{A}$君の年齢は$[シス]$歳,姉の年齢は$[セソ]$歳である.
(4)$\log_8 x+\log_8 (x+2) \geqq 1$を解くと
\[ x \geqq [タ] \]
である.
(5)曲線$y=x^2$上の点$(1,\ 1)$における接線の方程式は$y=[チ]x-[ツ]$である.
玉川大学 私立 玉川大学 2014年 第2問
$[ア]$~$[タ]$を埋めよ.

(1)$\displaystyle \sin x=\frac{\sqrt{5}-1}{2}$のとき$\sin 5x+\sin 3x$の値は
\[ \sin 5x+\sin 3x=[ア] \sin [イ]x \cos x \]
を用いれば
\[ [ウエ] \sqrt{[オ]}-[カキ] \]
である.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$n:m$に内分する点を$\mathrm{Q}$とする.ただし,$m \neq n$かつ$m$と$n$の最大公約数は$1$である.このとき$\displaystyle t=\frac{m}{m+n}$とおくと
\[ \overrightarrow{\mathrm{PQ}}=-t \overrightarrow{\mathrm{AB}}+([ク]-t) \overrightarrow{\mathrm{AC}} \]
である.いま,$2$直線$\mathrm{PQ}$,$\mathrm{BC}$の交点を$\mathrm{R}$として,点$\mathrm{Q}$が線分$\mathrm{PR}$の中点であるならば
\[ \overrightarrow{\mathrm{AR}}=-t \overrightarrow{\mathrm{AB}}+[ケ] ([コ]-t) \overrightarrow{\mathrm{AC}} \]
となるから
\[ m:n=[サ]:[シ] \]
である.
(3)数字$1,\ 2,\ 3,\ 4,\ 5$を使って$5$桁の整数を作る.その中で,数字の並べ方を逆にしたものをもとの整数に加えると,どの桁の数字も偶数になるものは
\[ [スセ] \]
個ある.
(4)曲線$y=x^2-x$と$x$軸の囲む部分の面積は$\displaystyle \frac{[ソ]}{[タ]}$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第2問
次の各設問に答えよ.

(1)連立方程式

$\log_5 |x-7|+\log_5(20-y)=2$
$\log_{\frac{1}{3}}(5x+y-32)=-1$

を満たす実数$x,\ y$は,$x=[ア]$,$y=[イウ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$の初項から第$n$項までの和が$37n^2+15n$のとき一般項は
\[ a_n=[エオ](n-1)+[カキ] \]
であり,$a_n$が$2000$より大きくなるのは第$[クケ]$項からである.
北海道薬科大学 私立 北海道薬科大学 2013年 第3問
$2$点$\mathrm{A}(2,\ 6)$,$\mathrm{B}(6,\ 2)$を結ぶ直線$\mathrm{AB}$の中点$\mathrm{P}$と原点$\mathrm{O}$を通る直線$\mathrm{OP}$がある.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,直線$\mathrm{OP}$の傾きは$[ウ]$である.
(2)$x$の$2$次関数のグラフで定める$2$つの放物線$C_1$と$C_2$が,点$\mathrm{P}$で共通接線$\mathrm{OP}$をもち,さらに$C_1$は点$\mathrm{A}$,$C_2$は点$\mathrm{B}$を通るとすると

$C_1$は$y=x^2+[エオ]x+[カキ]$
$C_2$は$y=[ク]x^2+[ケ]x+[コサシ]$

となる.
松山大学 私立 松山大学 2013年 第4問
座標平面上において,$2$点$\mathrm{A}(-2,\ 5)$,$\mathrm{B}(7,\ -1)$を通る直線を$\ell$とする.また,点$\mathrm{P}$は放物線$y=-3x^2$上を動く.

(1)線分$\mathrm{AB}$の長さは$[ア] \sqrt{[イウ]}$である.

(2)直線$\ell$の方程式は$\displaystyle y=-\frac{[エ]}{[オ]}x+\frac{[カキ]}{[ク]}$である.

(3)$\triangle \mathrm{ABP}$の面積の最小値は$\displaystyle \frac{[ケコ]}{[サ]}$であり,このとき点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[シ]}{[ス]},\ \frac{[セソ]}{[タチ]} \right)$である.
近畿大学 私立 近畿大学 2013年 第3問
関数$f(x)$は次の等式を満たすものとする.
\[ \int_1^x f(t) \, dt=x^3+3x^2 \int_0^1 f(t) \, dt+x+k \]
ただし,$k$は定数とする.

(1)$f(x)=[ア]x^2-[イ]x+[ウ]$であり,$k=[エ]$である.関数$f(x)$は$x=[オ]$のとき最小値$[カキ]$をとる.
(2)関数$y=g(x)$のグラフと関数$y=f(x)$のグラフが,直線$x=3$に関して対称であるとすると
\[ g(x)=[ク]x^2-[ケコ]x+[サシ] \]
である.$y=g(x)$のグラフと$x$軸との共有点の$x$座標は
\[ \frac{[スセ] \pm \sqrt{[ソ]}}{[タ]} \]
であり,$y=g(x)$のグラフと$x$軸で囲まれた部分の面積は
\[ \frac{[チ] \sqrt{[ツ]}}{[テ]} \]
である.
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
九州産業大学 私立 九州産業大学 2013年 第2問
放物線$y=x^2-4x+6$と放物線$y=2x^2-7x+8$がある.原点を$\mathrm{O}$とし,この$2$つの放物線の交点を$x$座標の小さい順に$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{C}$は$\triangle \mathrm{OAB}$の外接円上にあり$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$とは異なる点とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$である.
(2)$\triangle \mathrm{OAB}$の面積は$[オ]$である.
(3)$\triangle \mathrm{OAB}$の外接円の半径は$\displaystyle \frac{\sqrt{[カキ]}}{[ク]}$である.
(4)$\triangle \mathrm{OAB}$と$\triangle \mathrm{OBC}$の面積が等しいとき,点$\mathrm{C}$の座標は$([ケコ],\ [サ])$である.
スポンサーリンク

「カキ」とは・・・

 まだこのタグの説明は執筆されていません。