タグ「オカ」の検索結果

4ページ目:全39問中31問~40問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
$a=\sqrt{7}+\sqrt{5},\ b=\sqrt{7}-\sqrt{5}$とおく.

(1)$\displaystyle \frac{b}{a}=[ア]-\sqrt{[イウ]}$,$\displaystyle \frac{a}{b} = [エ]+\sqrt{[オカ]}$である.

(2)$\displaystyle \frac{b}{a},\ \frac{a}{b}$を解にもつ$2$次方程式は$x^2-[キク]x+[ケ]=0$と書くことができる.
(3)$A=\left( \begin{array}{cc}
a & -b \\
\displaystyle\frac{1}{a} & \displaystyle\frac{1}{b}
\end{array} \right)$とおくとき,$A$の逆行列$A^{-1}$は
\[ A^{-1}=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{7}}{[コサ]}+\frac{\sqrt{5}}{[シス]} & \displaystyle\frac{\sqrt{7}}{[セソ]}-\frac{\sqrt{5}}{[タチ]} \\ \\
-\displaystyle\frac{\sqrt{7}}{[ツテ]}+\frac{\sqrt{5}}{[トナ]} & \displaystyle\frac{\sqrt{7}}{[ニヌ]}+\frac{\sqrt{5}}{[ネノ]}
\end{array} \right) \]
東京理科大学 私立 東京理科大学 2012年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$2$つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$が
\[ |\overrightarrow{\mathrm{OA}}| = 2\sqrt{3}, \quad |\overrightarrow{\mathrm{OB}}|=\sqrt{15}, \quad \overrightarrow{\mathrm{OA}}\cdot\overrightarrow{\mathrm{OB}} = 8 \]
を満たしているとする.ここで,$|\overrightarrow{\mathrm{OA}}|,\ |\overrightarrow{\mathrm{OB}}|$はそれぞれ$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$の大きさを表し,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表すものとする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とおくと
\[ \cos \theta = \frac{[ア]}{[イウ]} \sqrt{[エ]} \]
となる.\\
\quad また,$\triangle \mathrm{OAB}$の面積は$\sqrt{[オカ]}$である.
(2)線分$\mathrm{AB}$上の点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AB}}$が垂直となるようにとる.このとき,点$\mathrm{C}$は線分$\mathrm{AB}$を$[キ]:[ク]$に内分する点である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第3問
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\mathrm{A}_5$と点$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{B}_5$が次のように並んでいる.
\[ \begin{array}{ccccc}
\mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 & \mathrm{A}_4 & \mathrm{A}_5 \\
\bullet & \bullet & \bullet & \bullet & \bullet \\ \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\mathrm{B}_1 & \mathrm{B}_2 & \mathrm{B}_3 & \mathrm{B}_4 & \mathrm{B}_5
\end{array} \]
各点$\mathrm{A}_i (1 \leqq i \leqq 5)$に対し,それぞれすべて異なる点$\mathrm{B}_j (1 \leqq j \leqq 5)$を$1$つずつ選んで線分で結ぶ.こうしてできた$5$本の線分を次のような集まりに分ける分け方を考える.

(i) 他の線分と交わらない線分はその線分だけで$1$つの集まりとする.
(ii) 他の線分と交わる線分は,その線分と交わる線分,及び,これらのいずれかに交わる線分を繰り返しすべて集めて$1$つの集まりとする.

例えば,次は集まりの個数が$3$個となる分け方である.
(図は省略)
また,次は集まりの個数が$2$個となる分け方である.
(図は省略)
このとき,次の問に答えなさい.

(1)集まりの個数が$5$個となる分け方は全部で$[ア]$通りである.
(2)集まりの個数が$4$個となる分け方は全部で$[イ]$通りである.
(3)集まりの個数が$3$個となる分け方は全部で$[ウエ]$通りである.
(4)集まりの個数が$2$個となる分け方は全部で$[オカ]$通りである.
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
近畿大学 私立 近畿大学 2012年 第3問
$a,\ b$を実数とし,行列$A=\left( \begin{array}{cc}
2 & a \\
b & 2
\end{array} \right)$で表される$1$次変換$f$と$\mathrm{P}(1,\ 0)$を考える.$1$次変換$f$と$f^2=f \circ f$による$\mathrm{P}$の像をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{QR}$を斜辺とする直角三角形の頂点となる必要十分条件は
\[ ab+[ア]b^2+[イ]=0 \]
である.この条件のもとで$a$のとる正の値の最小値は$[ウ] \sqrt{[エ]}$である.
(2)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{QR}$を斜辺とする直角二等辺三角形の頂点となる必要十分条件は
\[ (a,\ b)=\left( [オカ],\ -\frac{[キ]}{[ク]} \right) \quad \text{または} \quad (a,\ b)=\left( -[ケコ],\ \frac{[サ]}{[シ]} \right) \]
である.
千葉工業大学 私立 千葉工業大学 2011年 第2問
次の各問に答えよ.

(1)円$C:x^2+y^2-4x+6y+8=0$の中心は$([ア],\ [イウ])$,半径は$\sqrt{[エ]}$である.直線$(m+3)x-my-6=0$が$C$と接するような定数$m$の値は$[オカ]$または$[キ]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.$F=(1-4 \sin \theta) \cos 2\theta$は$t=\sin \theta$を用いて表すと,
\[ F=[ク] t^3-[ケ] t^2-[コ] t+[サ] \]
となる.$F$は$\displaystyle \theta=\frac{[シ]}{[ス]} \pi$のとき,最小値$\displaystyle \frac{[セソ]}{[タ]}$をとる.
西南学院大学 私立 西南学院大学 2010年 第1問
次の問に答えよ.

(1)方程式
\[ \frac{x+4}{x+6}+\frac{x+6}{x+8}=\frac{x+2}{x+4}+\frac{x+8}{x+10} \]
が成立するとき,$x$の値は,$[アイ]$である.
(2)$2$次関数$y=ax^2+bx+c$のグラフが$y=x^2-8x+9$のグラフと点$(1,\ -5)$に関して対称であるとき,$a,\ b,\ c$の値は,それぞれ,$[ウエ]$,$[オカ]$,$[キク]$である.
スポンサーリンク

「オカ」とは・・・

 まだこのタグの説明は執筆されていません。