タグ「ウエ」の検索結果

5ページ目:全55問中41問~50問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
$n$を$2$以上$9$以下の自然数とする.$1$から$n$までの数字が書いてある$n$枚のカードを入れた袋から,カードを順に$2$枚引いて,引いた順に右から並べて$2$桁の数を作り,それらのカードを袋に戻す試行を考える.次の各問いに答えよ.

(1)$n=9$のとき,この試行によって得られた$2$桁の数が$3$の倍数である確率は$\displaystyle\frac{[ア]}{[イ]}$である.
(2)この試行を$2$回繰り返すとき,$1$回目の数が$2$回目の数以上となる確率を$P(n)$とする.このとき,$P(5)=\displaystyle\frac{[ウエ]}{[オカ]}$である.また,$P(n) \geq \displaystyle\frac{7}{13}$となる最大の$n$の値は[キ]である.
西南学院大学 私立 西南学院大学 2012年 第1問
半径$R$の円に,四角形$\mathrm{ABCD}$が内接している.$\mathrm{AB}=\mathrm{BC}=\sqrt{19}$,$\mathrm{AD}=2$,$\mathrm{CD}=3$のとき,$\mathrm{AC}=\sqrt{[アイ]}$,$\displaystyle R=\frac{\sqrt{[ウエ]}}{[オ]}$,$\mathrm{BD}=[カ]$である.
青山学院大学 私立 青山学院大学 2012年 第1問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\mathrm{AC}=2$である$\triangle \mathrm{ABC}$について,次の問に答えよ.

(1)次の問に答えよ.

(i) $\theta=\angle \mathrm{ACB}$とするとき,$\displaystyle \cos \theta=-\frac{[ア]}{[イ]}$である.
(ii) $\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{\sqrt{[ウエ]}}{[オ]}$である.

(2)$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{P}$とする.ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$および$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{CP}}=\frac{[カ]}{[キ]} \overrightarrow{a}+\frac{[ク]}{[ケ]} \overrightarrow{b} \]
である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第1問
関数$y=1-x^2$,$y=4+3x-x^2$を考える.このとき,次の問に答えなさい.

(1)不等式$0 \leqq y \leqq 1-x^2$で表される領域の面積は$\displaystyle \frac{[ア]}{[イ]}$である.また,不等式
\[ y \geqq 1-x^2,\quad y \leqq 4+3x-x^2,\quad y \geqq 0 \]
で表される領域の面積は$\displaystyle \frac{[ウエ]}{[オ]}$である.
(2)曲線$y=1-x^2$上の点$\mathrm{P}(k,\ 1-k^2)$における接線を$\ell$とおく.このとき接線$\ell$が曲線$y=4+3x-x^2$と異なる$2$点で交わるような$k$の値の範囲は$\displaystyle \frac{[カキ]}{[ク]}<k$である.また,このとき交点の$x$座標の値を$\alpha$,$\beta$とおくと
\[ \alpha+\beta=[ケ]+[コ]k,\quad \alpha\beta=[サシ]+k^{[ス]} \]
である.
(3)接線$\ell$と曲線$y=4+3x-x^2$で囲まれる領域の面積が$\displaystyle \frac{125}{6}$となる$k$の値は$\displaystyle \frac{[セ]}{[ソ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第3問
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\mathrm{A}_5$と点$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{B}_5$が次のように並んでいる.
\[ \begin{array}{ccccc}
\mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 & \mathrm{A}_4 & \mathrm{A}_5 \\
\bullet & \bullet & \bullet & \bullet & \bullet \\ \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\mathrm{B}_1 & \mathrm{B}_2 & \mathrm{B}_3 & \mathrm{B}_4 & \mathrm{B}_5
\end{array} \]
各点$\mathrm{A}_i (1 \leqq i \leqq 5)$に対し,それぞれすべて異なる点$\mathrm{B}_j (1 \leqq j \leqq 5)$を$1$つずつ選んで線分で結ぶ.こうしてできた$5$本の線分を次のような集まりに分ける分け方を考える.

(i) 他の線分と交わらない線分はその線分だけで$1$つの集まりとする.
(ii) 他の線分と交わる線分は,その線分と交わる線分,及び,これらのいずれかに交わる線分を繰り返しすべて集めて$1$つの集まりとする.

例えば,次は集まりの個数が$3$個となる分け方である.
(図は省略)
また,次は集まりの個数が$2$個となる分け方である.
(図は省略)
このとき,次の問に答えなさい.

(1)集まりの個数が$5$個となる分け方は全部で$[ア]$通りである.
(2)集まりの個数が$4$個となる分け方は全部で$[イ]$通りである.
(3)集まりの個数が$3$個となる分け方は全部で$[ウエ]$通りである.
(4)集まりの個数が$2$個となる分け方は全部で$[オカ]$通りである.
九州産業大学 私立 九州産業大学 2012年 第3問
$a,\ b$を定数とする.$2$次関数$f(x)=x^2+ax+b$に対して,$1$次関数$g(x)$が$f(x)=(x-2)g(x)$を満たしており,$g(2)=3$である.放物線$y=f(x)$上の点$(2,\ f(2))$における接線を$\ell$とする.このとき

(1)定数$a,\ b$の値は$a=[アイ]$,$b=[ウエ]$である.
(2)直線$\ell$の方程式は$y=[オ]x-[カ]$である.
(3)直線$\ell$,直線$y=g(x)$および$x$軸で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.

(4)放物線$y=f(x)$と直線$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コサ]}{[シ]}$である.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
九州産業大学 私立 九州産業大学 2012年 第1問
次の問いに答えよ.

(1)$3x^2+6x-2=0$の$2$つの解を$\alpha,\ \beta$とする.

(i) $\displaystyle \alpha^2\beta+\alpha\beta^2=\frac{[ア]}{[イ]}$である.

(ii) $\displaystyle (\alpha-\beta)^2=\frac{[ウエ]}{[オ]}$である.

(iii) $\alpha^3+\beta^3=[カキク]$である.

(2)平面上の$3$点$(-1,\ 9)$,$(0,\ 3)$,$(2,\ 3)$を通る放物線の方程式は$y=[ケ]x^2-[コ]x+[サ]$である.
(3)$\displaystyle f(x)=(\log_3 27x)(\log_3 \frac{x}{3})=(\log_3 x)^2+[シ] \log_3 x-[ス]$である.$f(x)$は$\displaystyle x=\frac{[セ]}{[ソ]}$で最小値$[タチ]$をとる.
(4)$7$個の小石を$3$人の子供$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に配る.このとき,$1$個ももらえない子供はいないとする.また,小石は互いに区別されないものとする.

(i) 小石の配り方は$[ツテ]$通りである.
(ii) 子供$\mathrm{A}$にちょうど$3$個の小石が配られる確率は$\displaystyle \frac{[ト]}{[ナ]}$である.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
金沢工業大学 私立 金沢工業大学 2011年 第5問
$\mathrm{O}$を原点とする平面において,$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とし,$\mathrm{OC}$を対角線とする平行四辺形$\mathrm{OACB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくと,それぞれのベクトルの大きさは
\[ |\overrightarrow{a}|=2,\quad |\overrightarrow{b}|=3,\quad |\overrightarrow{c}|=\sqrt{19} \]
である.このとき,

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$であり,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{[イ]}$である.

(2)ベクトル$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{b}$に直交する$t$の値を$t_0$とすると,$\displaystyle t_0=\frac{[ウエ]}{[オ]}$であり,$|\overrightarrow{a}+t_0 \overrightarrow{b}|=\sqrt{[カ]}$である.

(3)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[キ]}{[ク]} \sqrt{[ケ]}$である.
スポンサーリンク

「ウエ」とは・・・

 まだこのタグの説明は執筆されていません。