タグ「ウエ」の検索結果

4ページ目:全55問中31問~40問を表示)
東京医科大学 私立 東京医科大学 2014年 第1問
次の$[ ]$を埋めよ.

(1)座標平面上の点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{4} \right)$を通る$2$曲線$\displaystyle C_1:y=\frac{1}{4}x^2$,$C_2:ax^2+by^2=1$($a,\ b$は正の定数)を考える.点$\mathrm{A}$における$2$曲線$C_1,\ C_2$の接線が直交するとき
\[ a=\frac{[ア]}{[イ]},\quad b=\frac{[ウエ]}{[オ]} \]
である.
(2)座標平面の点$\mathrm{P}(x,\ y)$が円$\displaystyle C:(x-1)^2+(y-1)^2=\frac{1}{16}$上を動くとき,式
\[ \frac{x}{y}+\frac{y}{x} \]
がとる最大値を$M$とすれば
\[ M=\frac{[カキ]}{[クケ]} \]
である.
東京医科大学 私立 東京医科大学 2014年 第4問
座標平面上の$2$つの曲線
\[ C_1:y=ax^2+1,\quad C_2:x=ay^2+1 \quad (a \text{は正の定数}) \]
を考える.

(1)$2$つの曲線$C_1,\ C_2$が$2$点で交わるような正の定数$a$の値の範囲は
\[ 0<a<\frac{[ア]}{[イ]} \]
である.
(2)$\displaystyle a=\frac{3}{16}$のとき,曲線$C_1$と曲線$C_2$とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウエ]}{[オカ]} \]
である.
玉川大学 私立 玉川大学 2014年 第2問
$[ア]$~$[タ]$を埋めよ.

(1)$\displaystyle \sin x=\frac{\sqrt{5}-1}{2}$のとき$\sin 5x+\sin 3x$の値は
\[ \sin 5x+\sin 3x=[ア] \sin [イ]x \cos x \]
を用いれば
\[ [ウエ] \sqrt{[オ]}-[カキ] \]
である.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$n:m$に内分する点を$\mathrm{Q}$とする.ただし,$m \neq n$かつ$m$と$n$の最大公約数は$1$である.このとき$\displaystyle t=\frac{m}{m+n}$とおくと
\[ \overrightarrow{\mathrm{PQ}}=-t \overrightarrow{\mathrm{AB}}+([ク]-t) \overrightarrow{\mathrm{AC}} \]
である.いま,$2$直線$\mathrm{PQ}$,$\mathrm{BC}$の交点を$\mathrm{R}$として,点$\mathrm{Q}$が線分$\mathrm{PR}$の中点であるならば
\[ \overrightarrow{\mathrm{AR}}=-t \overrightarrow{\mathrm{AB}}+[ケ] ([コ]-t) \overrightarrow{\mathrm{AC}} \]
となるから
\[ m:n=[サ]:[シ] \]
である.
(3)数字$1,\ 2,\ 3,\ 4,\ 5$を使って$5$桁の整数を作る.その中で,数字の並べ方を逆にしたものをもとの整数に加えると,どの桁の数字も偶数になるものは
\[ [スセ] \]
個ある.
(4)曲線$y=x^2-x$と$x$軸の囲む部分の面積は$\displaystyle \frac{[ソ]}{[タ]}$である.
西南学院大学 私立 西南学院大学 2014年 第1問
$x$を実数とするとき,以下の問に答えよ.

(1)$3^x+3^{-x}$のとりうる値の範囲は,$3^x+3^{-x} \geqq [ア]$である.
(2)$\displaystyle \frac{10}{3}(3^x+3^{-x})-(9^x+9^{-x})-\frac{4}{3}$の最大値は,$x=[イ]$のとき,$\displaystyle \frac{[ウエ]}{[オ]}$である.
愛知学院大学 私立 愛知学院大学 2014年 第1問
次の問いに答えよ.

(1)$\log_3 x+\log_2 y=4$,$\log_3 x \cdot \log_2 y=3$のとき
\[ (x,\ y)=([ア],\ [イ]),\ ([ウエ],\ [オ]) \]
である.
(2)方程式$\log_2 (x-2)+\log_2 (x+1)=2$の解は$x=[カ]$である.
(3)方程式$\log_4 x^2-\log_2 x \sqrt{x}+\log_{16}x^3=1$の解は$x=[キク]$である.
愛知学院大学 私立 愛知学院大学 2014年 第4問
$t$の関数$f(t)$を
\[ f(t)=-\frac{1}{2}(\log_2 t)^3+21(\log_4 t)^2-9 \log_4 t^2+1 \]
とおく.このとき以下の問いに答えなさい.

(1)$x=\log_2 t$とおくとき,
\[ f(t)=-\frac{[ア]}{[イ]}x^3+\frac{[ウエ]}{[オ]}x^2-[カ]x+1 \]
である.
(2)変数$t$が$1 \leqq t \leqq 256$の範囲を動くとき,$f(t)$は$t=[キク]$のとき最大値$[ケコ]$をとり,$t=[サ]$のとき最小値$\displaystyle -\frac{[シス]}{[セ]}$をとる.
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)不等式$x^2-2x-30<0$を満たす整数$x$は,全部で$[アイ]$個ある.
(2)有理数$m$と$n$について,$\displaystyle (2 \sqrt{2}+3)m+(5 \sqrt{2}-1)n=\frac{1}{3 \sqrt{2}-2}$が成立するとき,$\displaystyle m=\frac{[ウエ]}{[オカキ]}$,$\displaystyle n=\frac{[ク]}{[オカキ]}$である.
(3)$2$乗して$7+24i$となる複素数は,$\pm ([ケ]+[コ]i)$である.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第1問
方程式$2 \log_2 |x-4|+\log_2(x+8)=a$を考える.$a$は定数である.このとき,次の問に答えなさい.

(1)この方程式が解$x=0$をもつとき$a=[ア]$である.
(2)$a=3+\log_25$のとき,この方程式の解$x$は
\[ x=[イ],\quad [ウエ] \pm [オ] \sqrt{[カ]} \]
である.
(3)この方程式の解$x$の個数がちょうど$2$個となるとき$a$の値は$a=[キ]$である.また,このときの解$x$は$x=[クケ]$,$[コ]$である.また$a=5 \log_23$のとき,この方程式の解$x$の個数はちょうど$[サ]$個である.
松山大学 私立 松山大学 2013年 第3問
$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(5,\ 4)$,$\mathrm{C}(0,\ 4)$を頂点とする長方形$\mathrm{OABC}$の辺$\mathrm{AB}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}(5,\ m)$,$\mathrm{Q}(n,\ 4)$がある.また,$\angle \mathrm{POQ}={45}^\circ$,$\angle \mathrm{AOP}=\theta$とする.

(1)$\tan \theta$を$m$で表すと$\displaystyle \tan \theta=\frac{m}{[ア]}$である.$\tan (\theta+{45}^\circ)$を$n$で表すと$\displaystyle \tan (\theta+{45}^\circ)=\frac{[イ]}{n}$である.
(2)$(1)$の結果を利用して,$m$を$n$で表すと,$\displaystyle m=\frac{[ウエ]}{n+4}-[オ]$である.また,$n$の値の範囲は$\displaystyle \frac{[カ]}{[キ]} \leqq n \leqq [ク]$である.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S$を$n$で表すと


$\displaystyle S=[ケコ]-\frac{[サシ]n}{n+4}+\frac{[ス]}{2}n$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)-\frac{[ソタ](n+4)-[チツ]}{n+4}$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)+\frac{[チツ]}{n+4}-[ソタ]$となる.

したがって,$S$の最小値は$[テト](\sqrt{[ナ]}-1)$となり,そのとき,$n=[ニ](\sqrt{[ヌ]}-1)$である.
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
スポンサーリンク

「ウエ」とは・・・

 まだこのタグの説明は執筆されていません。