タグ「ウエ」の検索結果

2ページ目:全55問中11問~20問を表示)
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
北海道薬科大学 私立 北海道薬科大学 2015年 第3問
$\displaystyle \sin \theta-\cos \theta=\frac{1}{3} \left( 0<\theta<\frac{3}{4} \pi \right)$であるとする.

(1)$\sin \theta \cos \theta$の値は$\displaystyle \frac{[ア]}{[イ]}$である.

(2)$\displaystyle \sin^3 \theta-\cos^3 \theta=\frac{[ウエ]}{[オカ]}$,$\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{[キ] \sqrt{[クケ]}}{[コサ]}$である.

(3)$\displaystyle \tan \theta=\frac{[シ]+\sqrt{[スセ]}}{[ソ]}$である.
東京医科大学 私立 東京医科大学 2015年 第3問
座標空間における$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$に対して,点$\mathrm{P}(x,\ y,\ z)$が条件
\[ \mathrm{AP}=\mathrm{BP}=\mathrm{CP} \]
をみたしながら動くとする.このとき,$\mathrm{AP}^2$のとり得る最小値を$m$とすれば
\[ m=\frac{[アイ]}{[ウエ]} \]
である.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東邦大学 私立 東邦大学 2015年 第2問
等差数列$\{a_n\}$が,$a_{15}+a_{23}=-240$,$a_{19}+a_{20}+a_{21}=-318$を満たしている.このとき,公差は$[ウエ]$であり,和$\displaystyle \sum_{k=1}^n a_k$は$n=[オカ]$のとき最小となる.
東邦大学 私立 東邦大学 2015年 第11問
$x$と$y$を変数とする関数$f(x,\ y)=9^{x+1}3^y+3^{2x-y}+3^{y+3}9^{-x}+3^{1-2x-y}$は$\displaystyle (x,\ y)=\left( \frac{[ア]}{[イ]},\ [ウエ] \right)$のとき,最小値$[オカ] \sqrt{[キ]}$をとる.
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
以下の問に答えよ.

(1)$2$次不等式$ax^2+8x+b>0$の解が$-1<x<5$であるとき,$a=[アイ]$,$b=[ウエ]$である.
(2)$y=|x^2+x-2|+x+1$の$-3 \leqq x \leqq 1$における最大値は$[オ]$,最小値は$[カキ]$である.
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
スポンサーリンク

「ウエ」とは・・・

 まだこのタグの説明は執筆されていません。