タグ「アイ」の検索結果

6ページ目:全69問中51問~60問を表示)
東京医科大学 私立 東京医科大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)座標平面上の放物線$C:y=a(x-b)^2$($a,\ b$は正の定数)が点$\displaystyle \mathrm{A} \left( \frac{4}{5},\ \frac{3}{5} \right)$を通り,点$\mathrm{A}$における$C$の法線が原点$\mathrm{O}(0,\ 0)$を通るとき,$\displaystyle a=\frac{[アイ]}{[ウエ]}$,$\displaystyle b=\frac{[オカ]}{[キク]}$である.
(2)不等式
\[ \log (n+9)-\log (n+8)<\frac{1}{100} \]
をみたす最小の正の整数$n$の値は$n=[ケコ]$である.ただし,対数は自然対数とする.
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
九州産業大学 私立 九州産業大学 2013年 第3問
関数$f(x)=|x^2-2x-3|$と,曲線$C:y=f(x)$,直線$\ell:y=x+1$について考える.

(1)曲線$C$と$x$軸との交点の$x$座標は,小さい順に$[アイ]$,$[ウ]$である.
(2)関数$f(x)$の$-2 \leqq x \leqq 2$における最大値は$[エ]$であり,最小値は$[オ]$である.
(3)曲線$C$と$x$軸により囲まれた部分の面積は$\displaystyle \frac{[カキ]}{[ク]}$である.

(4)曲線$C$と直線$\ell$との交点の$x$座標は,小さい順に$[ケコ]$,$[サ]$,$[シ]$である.

(5)曲線$C$と直線$\ell$により囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[スセ]}{[ソ]}$である.
愛知学院大学 私立 愛知学院大学 2013年 第2問
曲線$C:y=x^3-tx$上の点$\mathrm{P}(a,\ a^3-ta) (a<0)$における接線$\ell$が$C$と交わる点を$\mathrm{Q}$とする.

(1)点$\mathrm{Q}$の$x$座標を$a$を用いて表すと$x=[アイ]a$である.
(2)点$\mathrm{Q}$における$C$の接線が直線$\mathrm{PQ}$と直交するとき$([ウ]a^2-t)([エオ]a^2-t)=-1$である.
(3)$(2)$を満たす$a$の値がただ$1$つ決まるとき,$\displaystyle t=\frac{[カ]}{[キ]}$である.
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
西南学院大学 私立 西南学院大学 2012年 第1問
半径$R$の円に,四角形$\mathrm{ABCD}$が内接している.$\mathrm{AB}=\mathrm{BC}=\sqrt{19}$,$\mathrm{AD}=2$,$\mathrm{CD}=3$のとき,$\mathrm{AC}=\sqrt{[アイ]}$,$\displaystyle R=\frac{\sqrt{[ウエ]}}{[オ]}$,$\mathrm{BD}=[カ]$である.
金沢工業大学 私立 金沢工業大学 2012年 第5問
座標平面上において直線$y=2x$を$\ell$とし,この直線$\ell$に関して対称な$2$点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(u,\ v)$をとる.

(1)直線$\mathrm{PQ}$は直線$\ell$に垂直であるから
\[ v-y=\frac{[アイ]}{[ウ]} (u-x) \qquad \cdots\cdots① \]
が成り立つ.
(2)点$\mathrm{P}$と点$\mathrm{Q}$の中点は直線$\ell$上にあるから
\[ v+y=[エ](u+x) \qquad \cdots\cdots② \]
が成り立つ.
(3)等式$①$と$②$より,$x,\ y$と$u,\ v$の間に関係
\[ \left( \begin{array}{c}
u \\
v
\end{array} \right)=\frac{1}{[オ]} \left( \begin{array}{cc}
[カキ] & [ク] \\
[ケ] & [コ]
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \qquad \cdots\cdots③ \]
が成り立つ.
(4)$1$次変換$③$を表す行列を$A$とすると,
\[ A^2=\left( \begin{array}{cc}
[サ] & [シ] \\
[ス] & [セ]
\end{array} \right),\quad A^{-1}=\frac{1}{[ソ]} \left( \begin{array}{cc}
[タチ] & [ツ] \\
[テ] & [ト]
\end{array} \right) \]
である.
青山学院大学 私立 青山学院大学 2012年 第1問
赤玉$7$個と白玉$5$個を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの箱に入れる.

(1)赤玉$7$個だけを$3$つの箱に入れるとき,入れ方は$[アイ]$通りである.ただし,玉が入らない箱があってもよいものとする.
(2)赤玉$7$個と白玉$5$個を$3$つの箱に入れるとき,入れ方は$[ウエオ]$通りである.ただし,玉が入らない箱があってもよいものとする.
(3)どの箱にも$1$個以上の玉を入れるとき,赤玉$7$個と白玉$5$個を$3$つの箱へ入れるような入れ方は$[カキク]$通りである.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第2問
$xy$平面に三角形$\mathrm{ABC}$があり,
\[ \angle \mathrm{ABC}=60^\circ,\quad \angle \mathrm{BAC}=105^\circ,\quad \mathrm{BC}=1+\sqrt{3} \]
であるという.このとき,次の問に答えなさい.

(1)$\mathrm{AB}=[アイ]+\sqrt{[ウ]}$,$\mathrm{AC}=\sqrt{[エ]}$である.

(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{\sqrt{[オ]}}{[カ]}$である.
(3)点$\mathrm{A}$を通り$xy$平面に垂直な直線上の点$\mathrm{D}$を$\mathrm{AD}=4$となるように$xy$平面の上方にとる.また,点$\mathrm{B}$を通り$xy$平面に垂直な直線上の点$\mathrm{E}$を$\mathrm{BE}=3$となるように$xy$平面の上方にとる.また,点$\mathrm{C}$を通り$xy$平面に垂直な直線上の点$\mathrm{F}$を$\angle \mathrm{DEF}=90^\circ$となるようにとる.このとき,$\mathrm{CF}=[キ]$で,三角形$\mathrm{DEF}$の面積を$S$とおくと$\displaystyle S^2=\frac{[クケ]}{[コ]}$である.
北海道薬科大学 私立 北海道薬科大学 2012年 第1問
次の各設問に答えよ.

(1)放物線$y=ax^2+bx-11$が頂点$(2,\ -3)$をもつとすると,$a=[アイ]$,$b=[ウ]$である.
(2)$\displaystyle \frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}=\frac{1}{18}$を満たす$x$の値は$[エオ]$,$[カ]$である.
(3)$\log_{\frac{1}{3}} \sqrt{27}+\log_{27}9 \sqrt{3}$を計算すると,$\displaystyle \frac{[キク]}{[ケ]}$である.
(4)$\displaystyle \int_{-3}^1 |(x+1)(x-3)| \, dx$の値は$[コサ]$である.
スポンサーリンク

「アイ」とは・・・

 まだこのタグの説明は執筆されていません。