タグ「ひし形」の検索結果

1ページ目:全10問中1問~10問を表示)
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
富山大学 国立 富山大学 2015年 第2問
ひし形$D$の$2$つの対角線の長さを$2a,\ 2b$とする.$D$と同じ周の長さ,および同じ面積をもつ長方形を$R$とし,その$2$辺の長さを$x,\ y (x \leqq y)$とする.このとき,次の問いに答えよ.

(1)$D$の周の長さ$s$を$a,\ b$を用いて表せ.
(2)$x,\ y$を$a,\ b$を用いて表せ.
(3)$R$の対角線の長さ$l$と$a+b$の大小を比較せよ.
(4)$a,\ b$が$s=4$を満たしながら動くとき,$l$のとりうる値の範囲を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
ひし形の紙がある(図$1$).点線で半分に折ると正三角形になった(図$2$).これを少し開いて机の上に立てると,三角錐の形になる(図$3$).その高さを次のようにして求めたい.
(図は省略)
(図は省略)
図$4$において,$2$つの正三角形$\mathrm{OAB}$と$\mathrm{OAC}$の$1$辺の長さを$1$とする.点$\mathrm{O}$と平面$\mathrm{ABC}$の距離が,三角錐$\mathrm{OABC}$の高さになる.空間ベクトルを利用してこの高さを求める.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta$とおき,線分$\mathrm{BC}$の中点を$\mathrm{M}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{AM}}$を,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$と$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.また,$|\overrightarrow{b}+\overrightarrow{c}|^2$の値を$\cos \theta$を用いて表せ.
(3)実数$t$に対して$\overrightarrow{\mathrm{OH}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OM}}$とおくと,点$\mathrm{H}$は直線$\mathrm{AM}$上にある.このとき,$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{BC}}$が成り立つことを示せ.さらに,$\mathrm{H}$が$\overrightarrow{\mathrm{OH}} \perp \overrightarrow{\mathrm{AM}}$を満たす点であるとき,$t$の値を$\cos \theta$を用いて表せ.
(4)三角錐$\mathrm{OABC}$の高さを$h$とする.$h$を$\cos \theta$を用いて表せ.さらに,$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{AM}}$が成り立つとき,$\theta$と$h$の値を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)等差数列$\{a_n\}$において,初項から第$10$項までの和が$-8$,初項から第$21$項までの和が$14$である.この数列の初項$a_1$は$[ア]$で,公差は$[イ]$である.
(2)$2 \log_3 4+\log_9 5-\log_3 8=\log_3 x$の解は$x=[ウ]$である.

(3)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{5}},\ y=\frac{1}{\sqrt{7}+\sqrt{5}}$のとき,$x^3+y^3$の値は$[エ]$である.

(4)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$となる自然数の組$(x,\ y)$で$x \geqq y$を満たすものをすべてあげると$(x,\ y)=[オ]$である.
(5)正の数$k$と角$\theta$に対して,$\sin \theta,\ \cos \theta$が$2$次方程式$5x^2-kx+2=0$の解となるような$k$の値は$[カ]$である.
(6)三角形$\mathrm{ABC}$において,$\displaystyle \frac{\sin A}{\sqrt{2}}=\frac{\sin B}{2}=\frac{\sin C}{1+\sqrt{3}}$であるとき,$\cos C$の値は$[キ]$である.
(7)整式$P(x)$を$2x^2+9x-5$で割ると余りが$3x+5$であり,$x-2$で割ると余りが$-3$であるとき,$P(x)$を$x^2+3x-10$で割ると,余りは$[ク]$である.
(8)座標空間内に$4$点$\mathrm{A}(-1,\ 2,\ 1)$,$\mathrm{B}(-1,\ -1,\ 4)$,$\mathrm{C}(1,\ -1,\ 1)$,$\mathrm{D}(x,\ y,\ z)$がある.これら$4$点が同一平面上にあり,かつこれらを頂点とする四角形がひし形であるのは,$(x,\ y,\ z)=[ケ]$のときである.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
(5)$5^{4 \log_5 2}$の値を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
愛媛大学 国立 愛媛大学 2011年 第4問
四面体$\mathrm{OABC}$の辺$\mathrm{OB}$,$\mathrm{OC}$,$\mathrm{AC}$,$\mathrm{AB}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{AS}}$と$\overrightarrow{\mathrm{AR}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{PS}}$,$\overrightarrow{\mathrm{SR}}$を表せ.
(3)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標が実数$t$を用いて,それぞれ$(0,\ 0,\ 0)$,$(1,\ 2,\ 3)$,$(t,\ 1,\ 0)$,$(2,\ t,\ 1)$で与えられているとする.

(i) 四角形$\mathrm{PQRS}$が長方形となるような$t$の値を求めよ.
(ii) 四角形$\mathrm{PQRS}$がひし形となるような$t$の値を求めよ.
愛媛大学 国立 愛媛大学 2011年 第1問
四面体$\mathrm{OABC}$の辺$\mathrm{OB}$,$\mathrm{OC}$,$\mathrm{AC}$,$\mathrm{AB}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{AS}}$と$\overrightarrow{\mathrm{AR}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{PS}}$,$\overrightarrow{\mathrm{SR}}$を表せ.
(3)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標が実数$t$を用いて,それぞれ$(0,\ 0,\ 0)$,$(1,\ 2,\ 3)$,$(t,\ 1,\ 0)$,$(2,\ t,\ 1)$で与えられているとする.

(i) 四角形$\mathrm{PQRS}$が長方形となるような$t$の値を求めよ.
(ii) 四角形$\mathrm{PQRS}$がひし形となるような$t$の値を求めよ.
愛媛大学 国立 愛媛大学 2011年 第1問
四面体$\mathrm{OABC}$の辺$\mathrm{OB}$,$\mathrm{OC}$,$\mathrm{AC}$,$\mathrm{AB}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{AS}}$と$\overrightarrow{\mathrm{AR}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて,$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{PS}}$,$\overrightarrow{\mathrm{SR}}$を表せ.
(3)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標が実数$t$を用いて,それぞれ$(0,\ 0,\ 0)$,$(1,\ 2,\ 3)$,$(t,\ 1,\ 0)$,$(2,\ t,\ 1)$で与えられているとする.

(i) 四角形$\mathrm{PQRS}$が長方形となるような$t$の値を求めよ.
(ii) 四角形$\mathrm{PQRS}$がひし形となるような$t$の値を求めよ.
スポンサーリンク

「ひし形」とは・・・

 まだこのタグの説明は執筆されていません。