タグ「なす角」の検索結果

7ページ目:全241問中61問~70問を表示)
京都府立大学 公立 京都府立大学 2015年 第2問
$r>0$とする.実数の数列$\{a_n\}$は,

$a_1=0,\quad a_2=1,$
${a_{n+2}}^2-2a_{n+2}a_{n+1}+(1-r){a_{n+1}}^2+2ra_{n+1}a_n-r{a_n}^2=0 \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たすとする.数列$\{b_n\}$を,

$b_n=a_{n+1}-a_n \quad (n=1,\ 2,\ 3,\ \cdots)$

で定める.$b_n>0 (n=1,\ 2,\ 3,\ \cdots)$とする.$\mathrm{O}$を原点とする$xy$平面上の点

$\mathrm{P}_n(n,\ a_n) \quad (n=1,\ 2,\ 3,\ \cdots)$

を考える.このとき,以下の問いに答えよ.

(1)$\displaystyle \frac{b_{n+1}}{b_n}$を$r$を用いて表せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$の成分表示を$n,\ r$を用いて与えよ.
(4)$\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$と$\overrightarrow{\mathrm{P}_{n+1} \mathrm{P}_{n+2}}$のなす角は$\displaystyle \frac{\pi}{2}$とはならないことを示せ.
札幌医科大学 公立 札幌医科大学 2015年 第4問
次の問いに答えよ.

(1)次の不定積分を求めよ.

\mon[$①$] $\displaystyle \int t \sin t \, dt$
\mon[$②$] $\displaystyle \int t^2 \cos t \, dt$

座標平面の原点を$\mathrm{O}$とする.点$\mathrm{A}(0,\ 1)$を中心とし半径$1$の円$C$上の$x \geqq 0$の範囲にある点$\mathrm{P}(x_p,\ y_p)$に対して,線分$\mathrm{OP}$と$x$軸の正の部分とのなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とする.また,$\mathrm{P}$における$C$の接線上に点$\mathrm{Q}(x_q,\ y_q)$を次の条件をみたすようにとる.
\begin{itemize}
$y_q \leqq y_p$
線分$\mathrm{PQ}$の長さは,$C$上の弧$\mathrm{OP}$(ただし弧全体が$x \geqq 0$に存在する方)の長さに等しい
$\mathrm{P}$の座標が$(0,\ 2)$のときは$x_q=\pi$となるように$\mathrm{Q}$をとる
$\mathrm{P}$が$\mathrm{O}$と一致する場合は$\mathrm{Q}$も$\mathrm{O}$とし,$\theta=0$とする
\end{itemize}
(2)$\mathrm{P}$の座標を$\theta$を用いて表せ.
(3)$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(4)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$y_q$の最大値と最小値を求めよ.
(5)$\mathrm{P}$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{Q}$の描く曲線と$y$軸および直線$y=2$で囲まれる部分の面積を求めよ.
京都大学 国立 京都大学 2014年 第6問
双曲線$\displaystyle y=\frac{1}{x}$の第$1$象限にある部分と,原点$\mathrm{O}$を中心とする円の第$1$象限にある部分を,それぞれ$C_1$,$C_2$とする.$C_1$と$C_2$は$2$つの異なる点$\mathrm{A}$,$\mathrm{B}$で交わり,点$\mathrm{A}$における$C_1$の接線$\ell$と線分$\mathrm{OA}$のなす角は$\displaystyle \frac{\pi}{6}$であるとする.このとき,$C_1$と$C_2$で囲まれる図形の面積を求めよ.
信州大学 国立 信州大学 2014年 第3問
$\mathrm{O}$を原点とする座標空間の$2$点$\mathrm{P}(\cos t,\ \sin t,\ 0)$,$\mathrm{Q}(\cos 2t,\ \sin 2t,\ \cos t)$について,次の問いに答えよ.ただし,$0 \leqq t \leqq 2\pi$とする.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$は平行でないことを示せ.
(2)三角形$\mathrm{OPQ}$の面積$S(t)$は$t$の値に関係なく一定であることを示せ.
(3)$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$のなす角$\theta(t)$のとる値の範囲を求めよ.
信州大学 国立 信州大学 2014年 第4問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
帯広畜産大学 国立 帯広畜産大学 2014年 第1問
$2$次方程式$x^2-x-1=0$の解を$\alpha,\ \beta (\alpha>\beta)$とし,
\[ \left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=\left( \begin{array}{cc}
\displaystyle\frac{\sqrt{5}}{5} & -\displaystyle\frac{\sqrt{5}}{5} \\
1 & 1
\end{array} \right) \left( \begin{array}{c}
\alpha^n \\
\beta^n
\end{array} \right) \]
によって数列$\{a_n\}$,$\{b_n\}$を定義する.ただし,$n$は自然数である.次の各問に答えなさい.

(1)次の各問に答えなさい.

(i) $\alpha,\ \beta$の値を求めなさい.
(ii) $a_1,\ a_2,\ a_3$の値を求めなさい.
(iii) $b_1,\ b_2,\ b_3$の値を求めなさい.

(2)ベクトル$\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$をそれぞれ$\overrightarrow{p}=(a_1,\ b_1)$,$\overrightarrow{q}=(a_2,\ b_2)$,$\overrightarrow{r}=(a_3,\ b_3)$と定義する.

(i) $\overrightarrow{p},\ \overrightarrow{q},\ \overrightarrow{r}$の大きさ$|\overrightarrow{p}|$,$|\overrightarrow{q}|$,$|\overrightarrow{r}|$を求めなさい.
(ii) $\overrightarrow{p}$と$\overrightarrow{q}$のなす角$\theta$について,$\cos \theta$,$\sin \theta$,$\tan \theta$を求めなさい.
(iii) $\overrightarrow{q}$と$\overrightarrow{r}$のなす角$\theta$について,$\cos 2\theta$,$\sin 2\theta$,$\tan 2\theta$を求めなさい.

(3)自然数$n$について,$a_{n+1} \geqq a_n$,$b_{n+1} \geqq b_n$がそれぞれ成り立つ.

(i) $\displaystyle \log_{10}a_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(ii) $\displaystyle \log_{10}b_n \leqq \frac{1}{3}$を満たす$n$をすべて求めなさい.

(iii) $\log_{10}(a_nb_n) \leqq 1$を満たす$n$をすべて求めなさい.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
香川大学 国立 香川大学 2014年 第1問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AF}}$と定める.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)辺$\mathrm{CD}$上に点$\mathrm{G}$を,辺$\mathrm{DE}$上に点$\mathrm{H}$をとり,線分$\mathrm{AG}$と$\mathrm{AH}$で正六角形の面積を$3$等分する.このとき,$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(3)$\overrightarrow{\mathrm{AG}}$と$\overrightarrow{\mathrm{AH}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
スポンサーリンク

「なす角」とは・・・

 まだこのタグの説明は執筆されていません。