タグ「なす角」の検索結果

20ページ目:全241問中191問~200問を表示)
富山大学 国立 富山大学 2011年 第3問
平面内の2つの単位ベクトル$\overrightarrow{a}$と$\overrightarrow{b}$に対して
\[ \overrightarrow{v} = \frac{1}{2 \sin \frac{\theta}{2}} (\overrightarrow{b}-\overrightarrow{a}) \]
とおく.ただし,$\theta$は$\overrightarrow{a}$と$\overrightarrow{b}$のなす角であり,$0<\theta<\pi$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{v}$と$\overrightarrow{b} \cdot \overrightarrow{v}$を$\theta$を用いて表せ.
(2)$\overrightarrow{x}$を,$\overrightarrow{a}$に垂直で,$\overrightarrow{x} \cdot \overrightarrow{b}>0$をみたす単位ベクトルとする.このとき$\overrightarrow{x}$を$\overrightarrow{a}$と$\overrightarrow{v}$を用いて表せ.
(3)$\displaystyle \theta=\frac{\pi}{6}$のとき,$\overrightarrow{a} \cdot \overrightarrow{v}$の値を求めよ.
福井大学 国立 福井大学 2011年 第1問
1辺の長さが1の正十二面体を考える.点O,A,B,C,D, \\
E,F,Gを図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
ただし,1辺の長さが1の正五角形の対角線の長さは \\
$\displaystyle \frac{1+\sqrt{5}}{2}$であることを用いてよい.なお,正十二面体では, \\
すべての面は合同な正五角形であり, 各頂点は$3$つの正五 \\
角形に共有されている.
\img{366_2547_2011_1}{55}

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{BE}}$,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{DF}}$と$\overrightarrow{\mathrm{EF}}$のなす角を求めよ.
三重大学 国立 三重大学 2011年 第2問
座標平面において直線$\ell:y=ax+b$と直線$m:y=2x$を考える.

(1)2点$(0,\ 0)$,$(2,\ 0)$から直線$\ell$までの距離が一致するための$a,\ b$についての必要十分条件を求めよ.
(2)(1)の条件のもとで2直線$\ell,\ m$のなす角が$\displaystyle \frac{\pi}{4}$であるとき$a,\ b$の値を求めよ.ただし2直線のなす角$\theta$は常に$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で考えるものとする.
三重大学 国立 三重大学 2011年 第2問
座標平面において直線$\ell:y=ax+b$と直線$m:y=2x$を考える.

(1)2点$(0,\ 0)$,$(2,\ 0)$から直線$\ell$までの距離が一致するための$a,\ b$についての必要十分条件を求めよ.
(2)(1)の条件のもとで2直線$\ell,\ m$のなす角が$\displaystyle \frac{\pi}{4}$であるとき$a,\ b$の値を求めよ.ただし2直線のなす角$\theta$は常に$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で考えるものとする.
愛知教育大学 国立 愛知教育大学 2011年 第6問
$\theta$を$0 \leqq \theta \leqq \pi$をみたす実数とする.単位円上の点Pを,動径OPと$x$軸の正の部分とのなす角が$\theta$である点とし,点Qを$x$軸の正の部分の点で,点Pからの距離が2であるものとする.また,$\theta=0$のときの点Qの位置をAとする.

(1)線分OQの長さを$\theta$を使って表せ.
(2)線分QAの長さを$L$とするとき,極限値$\displaystyle \lim_{\theta \to 0}\frac{L}{\theta^2}$を求めよ.
福島大学 国立 福島大学 2011年 第1問
以下の問いに答えなさい.

(1)次の不等式を解きなさい.
\[ -2(\log_2x)^2+9\log_82x<1 \]
(2)放物線$y=-x^2$に,点$\mathrm{A}(0,\ a)$から引いた$2$本の接線のなす角が$\displaystyle \frac{\pi}{2}$になるときの$a$の値を求めなさい.
(3)$\displaystyle \int_0^\pi x^2 \sin 2x \, dx$を求めなさい.
福島大学 国立 福島大学 2011年 第2問
以下の問いに答えなさい.

(1)点Oを頂点とし,1辺の長さ1の正方形ABCDを底面とする四角錐O-ABCDが,$\text{OA}=\text{OB}=\text{OC}=\text{OD}=1$を満たしているとする.辺OAを$2:1$に内分する点をP,辺OCを$t:1-t$に内分する点をQとする.線分BPと線分BQのなす角が$\displaystyle \frac{\pi}{3}$になるときの$t$の値を求めなさい.
(2)点Pが放物線$y=x^2$上を動くき,定点A$(1,\ a)$と点Pとを結ぶ線分APを$1:2$に内分する点Qの軌跡の方程式を$a$を用いて書きなさい.
(3)$\displaystyle \frac{d}{dx} \int_0^{\sin 3x} e^{2t} \, dt$を求めなさい.
電気通信大学 国立 電気通信大学 2011年 第4問
直線$\ell:y=2x$の法線ベクトルを$\overrightarrow{n}=(a,\ b)$とし,点P$(x,\ y)$と直線$\ell$との距離を$h$とする.ただし,$|\overrightarrow{n}|=1$で,$a>0$とする.以下の問いに答えよ.

(1)$\overrightarrow{n}$の成分$a,\ b$を求めよ.
(2)原点をOとし,$\overrightarrow{\mathrm{0}}$でない$\overrightarrow{\mathrm{OP}}$に対し,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{n}$のなす角を$\theta$とする.このとき,$h$を$|\overrightarrow{\mathrm{OP}}|$と$\theta$を用いて表せ.また,$h$を$x,\ y$を用いて表せ.

以下では,曲線$C$を,点A$(1,\ 0)$と直線$\ell$からの距離が等しい点P$(x,\ y)$の軌跡とする.

\mon[(3)] 曲線$C$の方程式($x,\ y$の関係式)を求めよ.
\mon[(4)] 曲線$C$と直線$y=t \ (t \text{は定数})$との共有点の個数を求めよ.
\mon[(5)] 曲線$C$と直線$y=t$が2個の共有点Q,Rをもつとき,線分QRの長さを$t$を用いて表せ.
\mon[(6)] 曲線$C$と直線$y=0$とで囲まれる部分の面積$S$を求めよ.
山形大学 国立 山形大学 2011年 第4問
$xy$平面上に曲線$\displaystyle y=\frac{1}{x} \ (x>0)$がある.曲線$C$上の点P$\displaystyle \left( t,\ \frac{1}{t} \right)$における接線を$\ell$とし,原点Oから$\ell$に下ろした垂線をOHとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式は$\displaystyle y=-\frac{1}{t^2}x+\frac{2}{t}$であることを示せ.
(2)点Hの座標は$\displaystyle \left( \frac{2t}{1+t^4},\ \frac{2t^3}{1+t^4} \right)$であることを示せ.
(3)直線$\ell$と$y$軸のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とし,線分OHの長さを$d$とする.

\mon[(i)] $t^2,\ d^2$を$\theta$の式で表せ.
\mon[(ii)] $\displaystyle \lim_{\theta \to +0}\frac{d^2}{\theta}$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第2問
Oを原点とする$xy$平面上を動く点Pの時刻$t$における座標$(x,\ y)$が
\[ x=(1+t^2)\cos t,\quad y=(1+t^2)\sin t \]
で与えられている.時刻$t$におけるPの速度を$\overrightarrow{v}$とし,2つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{v}$のなす角を$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$である.

(1)時刻$t$において,ベクトル$\overrightarrow{a}=(\cos t,\ \sin t),\ \overrightarrow{b}=(-\sin t,\ \cos t)$と実数$c,\ d$が$\overrightarrow{v}=c \overrightarrow{a}+d \overrightarrow{b}$を満たすとき,$c,\ d$を$t$を用いて表せ.
(2)$t>0$のとき,$\tan \theta$を$t$を用いて表せ.
(3)$t>0$における$\theta$の最小値を求めよ.
スポンサーリンク

「なす角」とは・・・

 まだこのタグの説明は執筆されていません。