タグ「なす角」の検索結果

11ページ目:全241問中101問~110問を表示)
秋田県立大学 公立 秋田県立大学 2014年 第4問
平面上に三つの異なる定点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.また,同じ平面上に動点$\mathrm{P}$があり,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{2}$を満たす.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$,$(3)$は解答とともに導出過程も記述せよ.

(1)$\overrightarrow{m}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{MP}}|$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=\sqrt{14}$,$\overrightarrow{a} \cdot \overrightarrow{b}=-6$が成り立つ.また,$\overrightarrow{a}$と$\overrightarrow{m}$のなす角を$\alpha$,$\overrightarrow{a}$と$\overrightarrow{\mathrm{MP}}$のなす角を$\beta$とする.ただし,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq \pi$とする.以下の設問$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\cos \alpha$の値を求めよ.
(ii) $\triangle \mathrm{OPA}$の面積が最大となるときの$\beta$の値を求めよ.
(iii) $\triangle \mathrm{OPA}$の面積の最大値を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第1問
以下の問いの空欄$[ア]$~$[ス]$に適する数値,式などを記せ.

(1)直線$\displaystyle y=\frac{x}{\sqrt{3}}+1$と$x$軸の正の向きとのなす角は$[ア]$であり,この直線と放物線$\displaystyle y=\frac{x^2}{4}$の共有点の座標は$([イ],\ [ウ])$と$([エ],\ [オ])$である.
(2)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{\sin A}{9}=\frac{\sin B}{7}=\frac{\sin C}{5}$が成り立つとき,この三角形の最も大きい角の余弦の値は$[カ]$である.この三角形の最も大きい辺の長さを$9$とすると,三角形の面積は$[キ]$である.
(3)同じ$2$つの箱と,同じ$4$つの球がある.$2$つの箱にすべての球を分配するときの組み合わせは$[ク]$通りである.また,大小の$2$つの箱と,$1$から$4$までの数が書かれた$4$つの球があるとき,すべての球を分配するときの組み合わせは$[ケ]$通りである.ただし,片方の箱のみに球が入っている場合も含む.
(4)$\displaystyle x=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}},\ y=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$のとき,$x^2+y^2$の値は$[コ]$,$x^3-y^3$の値は$[サ]$となる.
(5)大小の$2$個のさいころを投げ,出た目が同じ場合は$10$点,大のさいころの目のほうが大きい場合は$5$点,それ以外の場合には得点は得られないとするとき,点数を得られる目が出る確率は$[シ]$で,得点の期待値は$[ス]$点である.
信州大学 国立 信州大学 2013年 第1問
次の問いに答えよ.

(1)不等式$\log_3(x-2)+2 \log_9(x-4)<1$を解け.
(2)$\mathrm{O}$を原点とする座標空間の座標軸上に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ \sqrt{6},\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$がある.線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{BC}$,$\mathrm{BA}$を$t:1-t$に内分する点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とする.この$4$点により定まる長方形$\mathrm{PQRS}$の面積$M(t)$が最大となるとき,ベクトル$\overrightarrow{\mathrm{PR}}$,$\overrightarrow{\mathrm{QS}}$のなす角$\theta \ (0<\theta<\pi)$を求めよ.
(3)$3$個のサイコロを同時に投げるとき,出る目の積が$10$の倍数である確率を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第2問
$k$を正の定数とする.$2$つの曲線
\[ C_1:y=\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=k \tan x \ \left( 0 \leqq x<\frac{\pi}{2} \right) \]
について,次の問いに答えよ.

(1)$C_1$と$C_2$の交点におけるそれぞれの曲線の接線を$\ell_1,\ \ell_2$とする.直線$\ell_1,\ \ell_2$がなす角を$\displaystyle \theta \ \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とするとき,$\theta$の値を求めよ.
(2)$\displaystyle k=\frac{3}{2}$のとき,曲線$C_1,\ C_2$と$y$軸で囲まれる図形を$x$軸のまわりに回転させてできる立体の体積$V$を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第2問
$|k|<1$または$k>1$を満たす実数$k$に対し,次の$2$次曲線$C(k)$を考える.
\[ C(k):\frac{x^2}{k+1}+\frac{y^2}{k-1}=1 \]
以下の問いに答えよ.

(1)点$(1,\ 1)$を通る曲線$C(k)$をすべて求めて,その概形をかけ.
(2)曲線$C(3)$が点$(a,\ b) \ (a>0,\ b>0)$を通るとき,$a$と$b$の間に成り立つ関係式を求めよ.またこのとき,点$(a,\ b)$を通る曲線$C(k) \ (k \neq 3)$の方程式を,$b$を用いて表し,その焦点を求めよ.
(3)(2)の$2$つの曲線$C(3)$,$C(k)$について,点$(a,\ b)$における$C(3)$,$C(k)$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$と$\ell_2$のなす角度を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2013年 第2問
図に示したように第$1$象限内に原点を頂点の一つとして有する \\
一辺の長さが$a$である正三角形$\mathrm{OAB}$がある.この図形に関す \\
る以下の問いに答えよ.ただし,線分$\mathrm{OA}$と$x$軸とのなす角を \\
$15^\circ$とする.また,三角関数を使用する場合,三角関数は数値 \\
化すること.
\img{410_1079_2013_1}{32}

(1)三角形$\mathrm{OAB}$の面積を求めよ.
(2)三角形の二つの頂点$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(3)直線$\mathrm{OA}$,$\mathrm{OB}$および$\mathrm{AB}$の方程式を求めよ.
(4)この三角形$\mathrm{OAB}$の内部にあり,三角形に内側で接する円の方程式を求めよ.また,この円の面積を求めよ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
佐賀大学 国立 佐賀大学 2013年 第3問
$x$軸,$y$軸,$z$軸を座標軸,原点を$\mathrm{O}$とする座標空間において,$z$軸 \\
を中心軸とする半径$1$の円柱を考える.次に,$x$軸を含み$xy$平面と \\
のなす角が$\displaystyle \frac{\pi}{4}$となる平面を$\alpha$とし,平面$\alpha$による円柱の切り口の \\
曲線を$C$とする.また,点$\mathrm{A}(1,\ 0,\ 0)$とする.さらに,曲線$C$上 \\
の点$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PQ}$とし,$\angle \mathrm{AOQ}=\theta$ \ \\
$(0 \leqq \theta<2\pi)$とする.このとき,次の問に答えよ.
\img{711_2927_2013_1}{48}

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{A}$を通り$z$軸に平行な直線を$\ell$とする.$\ell$によって円柱の側面を切り開いた展開図の上に,曲線$C$の概形をかけ.
(3)図のように,平面$\alpha$と$yz$平面の交線を$Y$軸とする.$xY$平面における曲線$C$の方程式を求め,その概形をかけ.
(図は省略)
室蘭工業大学 国立 室蘭工業大学 2013年 第4問
平面上の$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$は互いに異なる点とする.三角形$\mathrm{OAB}$において
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=3 \]
かつ$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$60^\circ$とする.$\ell$は点$\mathrm{A}$を通り$\overrightarrow{\mathrm{OA}}$が法線ベクトルである直線,$m$は点$\mathrm{B}$を通り$\overrightarrow{\mathrm{AB}}$が法線ベクトルである直線とする.また,$\ell$と$m$は点$\mathrm{P}$で交わるとする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{AP}}$であることを用いて,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(2)内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}}$を求めよ.
(3)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$を満たす実数$s,\ t$の値を求めよ.
スポンサーリンク

「なす角」とは・・・

 まだこのタグの説明は執筆されていません。