タグ「とり方」の検索結果

1ページ目:全11問中1問~10問を表示)
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
放物線$C:y^2=4px (p>0)$の焦点$\mathrm{F}(p,\ 0)$を通る$2$直線$\ell_1$,$\ell_2$は互いに直交し,$C$と$\ell_1$は$2$点$\mathrm{P}_1$,$\mathrm{P}_2$で,$C$と$\ell_2$は$2$点$\mathrm{Q}_1$,$\mathrm{Q}_2$で交わるとする.次の問に答えよ.

(1)$\ell_1$の方程式を$x=ay+p$と置き,$\mathrm{P}_1$,$\mathrm{P}_2$の座標をそれぞれ$(x_1,\ y_1)$,$(x_2,\ y_2)$とする.$y_1+y_2$,$y_1y_2$を$a$と$p$で表せ.
(2)$\displaystyle \frac{1}{\mathrm{P}_1 \mathrm{P}_2}+\frac{1}{\mathrm{Q}_1 \mathrm{Q}_2}$は$\ell_1$,$\ell_2$のとり方によらず一定であることを示せ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
青森公立大学 公立 青森公立大学 2012年 第2問
1個のサイコロを3回投げて,1回目に出た目を$a$,2回目に出た目を$b$,3回目に出た目を$c$とする.次の問いに答えよ.

(1)$a>2b>c$となる確率を求めよ.
(2)$a,\ 2b,\ c$を辺の長さとする三角形を作ることができる$a,\ b,\ c$の条件を求めよ.
(3)$a,\ 2b,\ c$を辺の長さとする直角三角形を作ることができる$a,\ b,\ c$の組$(a,\ b,\ c)$のとり方は何通りあるか.
(4)$b=2$のとき,$a,\ 2b,\ c$を辺の長さとする三角形を作ることができる$a,\ c$の組$(a,\ c)$のとり方は何通りあるか.
(5)$a,\ 2b,\ c$を辺の長さとする三角形を作ることができる確率を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
福岡女子大学 公立 福岡女子大学 2012年 第2問
放物線$y=x^2$の$2$つの接線が直交しており,接点を$\mathrm{P}$,$\mathrm{Q}$としその$x$座標をそれぞれ$s,\ t$とする.次の問に答えなさい.

(1)$s$と$t$の関係式を求めなさい.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分は,接線のとり方に関係なく常に$y$軸上のある定点を通ることを示しなさい.
弘前大学 国立 弘前大学 2010年 第2問
$a>1$を定数とする.3つの放物線$\displaystyle y=x^2,\ y=\frac{1}{2}x^2,\ y=ax^2$の$x \geqq 0$の部分をそれぞれ,$C,\ C_1,\ C_2$とする.$C$上の点Pから$x$軸に下ろした垂線と2曲線$C,\ C_1$で囲まれた領域を$D_1$とする.Pから$y$軸に下ろした垂線と2曲線$C,\ C_2$で囲まれた領域を$D_2$とする.

(1)領域$D_1,\ D_2$の面積をそれぞれ$S_1,\ S_2$とする.点Pのとり方によらず常に$S_1=S_2$となるような$a$の値を求めよ.
(2)領域$D_1,\ D_2$を$y$軸のまわりに1回転してできる立体の体積をそれぞれ$V_1,\ V_2$とする.点Pのとり方によらず常に$V_1=V_2$となるような$a$の値を求めよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
スポンサーリンク

「とり方」とは・・・

 まだこのタグの説明は執筆されていません。