タグ「ただ」の検索結果

1ページ目:全3問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
静岡大学 国立 静岡大学 2011年 第2問
自然数$a,\ b$に対して,$a = bq+r,\ 0 \leqq r \leqq b-1$を満たす整数$q,\ r$がただ1組存在する.このとき$q$は$a$を$b$で割った商,$r$は$a$を$b$で割った余りという.自然数$a_0,\ a_1$が与えられたとき,数列$\{a_n\},\ \{q_n\}$は次の性質を満たすものとする.

\mon[(i)] $q_n$は$a_{n-1}$を$a_n$で割った商
\mon[(ii)] $\biggl( \begin{array}{c}
a_n \\
a_{n+1}
\end{array} \biggr)=\biggl( \begin{array}{cc}
0 & 1 \\
1 & -q_n
\end{array} \biggr) \biggl( \begin{array}{c}
a_{n-1} \\
a_{n}
\end{array} \biggr)$

ただし,$a_{N+1}=0$となる自然数$N$が存在すれば,$n>N$に対して$q_n$および$a_{n+1}$は定義しない.このとき,次の問いに答えよ.

(1)$a_{N+1}=0$となる自然数$N$が存在することを証明せよ.
(2)$a_N=aa_0+ba_1$を満たす整数$a,\ b$が存在することを証明せよ.
(3)$a_N$は$a_0$と$a_1$の最大公約数であることを証明せよ.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第3問
$a,\ b$を実数とする.

(1)定積分
\[ I(a,\ b)=\int_{-\pi}^\pi (1+a \sin x+bx)^2 \, dx \]
を求めよ.
(2)$a,\ b$が実数全体を動くとき,$(1)$の定積分$I(a,\ b)$を最小にするような実数の組$(a,\ b)$がただ一組存在することを示し,そのような$(a,\ b)$及び$I(a,\ b)$の最小値を求めよ.
スポンサーリンク

「ただ」とは・・・

 まだこのタグの説明は執筆されていません。