タグ「さいころ」の検索結果

36ページ目:全413問中351問~360問を表示)
北海学園大学 私立 北海学園大学 2011年 第2問
$5$個のさいころを同時に投げるとき,次の問いに答えよ.

(1)$5$個のさいころすべてに同じ目が出る確率を求めよ.
(2)$3$個のさいころに同じ目が出て,かつ残りの$2$個のさいころにも同じ目が出る確率を求めよ.ただし,$3$個のさいころに出た同じ目と$2$個のさいころに出た同じ目は異なるとする.
(3)出た目が連続した$5$つの数の組合せになる確率を求めよ.
自治医科大学 私立 自治医科大学 2011年 第20問
$1$個のさいころを$3$回投げたとき,$1$回目,$2$回目,$3$回目に出た目の数をそれぞれ$a,\ b,\ c$とする.積$abc$が$3$の倍数となる確率を$m$,積$abc$が$5$の倍数となる確率を$n$としたとき,$\displaystyle \frac{91m}{38n}$の値を求めよ.
東北学院大学 私立 東北学院大学 2011年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$2 \log_2x-\log_2 (3x-2) \geqq 0$を満たす$x$の範囲は$[ア]$である.
(2)$3$つのサイコロを同時にふるとき,目の和の合計が$16$以上となる確率は$[イ]$である.
(3)原点を$\mathrm{O}$とし,$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(1,\ 1,\ 0)$に対し直線$\mathrm{AB}$上の点$\mathrm{P}$が$\mathrm{OP} \perp \mathrm{AB}$を満たすとする.このとき$\mathrm{P}$の座標は$[ウ]$である.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)大小$2$つのサイコロを振り,出た目をそれぞれ$a,\ b$とする.$ab \geqq 20$となる確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$ab$が$3$で割り切れる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.

(2)$\triangle \mathrm{ABC}$において$\mathrm{BC}=2$,$\mathrm{AC}=\sqrt{2}$,$\angle \mathrm{C}=105^\circ$とする.
\[ \cos 105^\circ=\frac{\sqrt{[オ]}-\sqrt{[カ]}}{[キ]} \]
である.また,$\mathrm{AB}=[ク]+\sqrt{[ケ]}$であり,$\angle \mathrm{A}=[コサ]^\circ$である.
(3)$a,\ b$を正の実数で,$a \neq 1,\ b \neq 1$とする.このとき

$(\log_{a^2}b+\log_b a^3)(\log_{a^3}b+\log_{b^2}a)$

$\displaystyle =\frac{[シ]}{[ス]} \cdot (\log_a b)^2+\frac{[セ]}{[ソ]} \cdot (\log_b a)^2+\frac{[タ]}{[チ]}$

である.
甲南大学 私立 甲南大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{A}$君は$1$個のさいころを投げ,それと同時に$\mathrm{B}$君は$2$個のさいころを投げる.このとき,$\mathrm{B}$君のさいころの目の少なくとも一方が$\mathrm{A}$君のさいころの目より大きい確率を求めよ.
(2)$0<a<1$のとき,$a^{x^2}>3^{x-2}a^{2x}$を満たす$x$の範囲を求めよ.
甲南大学 私立 甲南大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{A}$君は$1$個のさいころを投げ,それと同時に$\mathrm{B}$君は$2$個のさいころを投げる.このとき,$\mathrm{B}$君のさいころの目の少なくとも一方が$\mathrm{A}$君のさいころの目より大きい確率を求めよ.
(2)$0<a<1$のとき,$a^{x^2}>3^{x-2}a^{2x}$を満たす$x$の範囲を求めよ.
龍谷大学 私立 龍谷大学 2011年 第2問
さいころを$3$回続けて投げて出る目の数を順に$a,\ b,\ c$とする.$m=abc$として次の問いに答えなさい.

(1)$m$が$5$の倍数となる確率を求めなさい.
(2)$m$が$3$の倍数となる確率を求めなさい.
(3)$m$が素数となる確率を求めなさい.
(4)$m$が$36$となる確率を求めなさい.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)立方体の各面に$1$~$6$の目が$1$つずつ書かれたサイコロを$2$つ振って,出た目の大きくない方を$x$とする.$x=2$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.$x$の期待値は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$A=\left( \begin{array}{cc}
5 & 11 \\
3 & 7
\end{array} \right)$とする.行列$A$が表す$1$次変換により,点$(3,\ -2)$は点$([オ],\ [カ])$に移り,点$([キ],\ [ク])$は点$(3,\ 1)$に移る.
(3)$f(x)=x^3-9x^2+18x+9$とし,
\[ A=\{x \;|\; f(x)>0\},\quad B=\{x \;|\; x>-1\} \]
とする.次が成り立つ.
\[ 1 [あ] A,\quad 5 [い] A,\quad A [う] B \]
\begin{screen}
{\bf あ,い,うの選択肢:} \\
$(\mathrm{a}) \in \quad (\mathrm{b}) \not\in \quad (\mathrm{c}) \ni \quad (\mathrm{d}) \not\ni \quad (\mathrm{e}) \subset \quad (\mathrm{f}) \supset \quad (\mathrm{g}) =$
\end{screen}
また,正の整数$a$に対して,
\[ C=\{x \;|\; 0 \leqq x \leqq a\} \]
とする.$A \supset C$となる最も大きい整数$a$は$a=[ケ]$である.
立教大学 私立 立教大学 2011年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$名が次のようなルールのゲームを行った.

$\mathrm{A}$と$\mathrm{B}$で同時にサイコロを振り,偶数が出た場合は得点を$1$とし,奇数が出た場合は得点を$0$とする.
それぞれが$5$回サイコロを振り終わった時点で,より多くの得点をあげたものを勝者とし,得点が同じ場合は引き分けとする.
このとき,次の問に答えよ.

(1)$\mathrm{A}$の得点が$0$点かつ$\mathrm{B}$の得点が$1$点という経過の後で,終了時に$\mathrm{A}$の得点が$4$点である場合,得点の取り方は何通りあるか.
(2)$\mathrm{A}$と$\mathrm{B}$が引き分ける確率を求めよ.
(3)$\mathrm{A}$が勝利する確率を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
スポンサーリンク

「さいころ」とは・・・

 まだこのタグの説明は執筆されていません。