タグ「お金」の検索結果

1ページ目:全2問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第6問
ある人が破産したとき,すなわち,借りているお金の一部分しか返すことができなくなったとき,その人の財産(現在残っているものをお金にしたもの)の総額$A$を$n$人の債権者(お金を貸した人)にどう分配するかについて考える.債権者には債権額(貸したお金の額)の少ない順に番号が振られており,第$i$番目の債権者の債権額を$B_i$とすると,$B_i<B_{i+1} (i=1,\ \cdots,\ n-1)$が成り立っている.また,$\displaystyle B=\sum_{i=1}^n B_i$としたとき,$A<B$である.以下では$A=B$のときを含めて,第$i$番目の債権者の分配額$X_i$を,$B_i$の状況に応じて,次のルールに従って決める.


\mon[ケース$1$:] $\displaystyle A \leqq \frac{n}{2}B_1$のときは,$\displaystyle X_i=\frac{1}{n}A (i=1,\ \cdots,\ n)$とする.
\mon[ケース$2$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B-\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \leqq A \leqq \frac{1}{2}B-\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
\displaystyle\frac{1}{2}B_k+\frac{1}{n-k} \left\{ A-\frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$3$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B+\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \leqq A \leqq \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_{k}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
B_i-\displaystyle\frac{1}{2}B_k-\frac{1}{n-k} \left\{ \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k)-A \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$4$:] $\displaystyle B-\frac{n}{2}B_1 \leqq A$のときは,$\displaystyle X_i=B_i-\frac{1}{n}(B-A) (i=1,\ \cdots,\ n)$とする.


(1)$n=2,\ B_1=60,\ B_2=180$としたとき,$A$が
\[ [$85$][$86$][$87$] \leqq A \leqq [$88$][$89$][$90$] \]
の範囲ならば,$X_1=30$となる.また,$X_2$が$X_1$の$4$倍となるのは,$A$の値が$2$通りあり,小さい順に$[$91$][$92$][$93$]$と$[$94$][$95$][$96$]$の場合である.
(2)$n=3,\ B_1=60,\ B_2=90,\ B_3=180$としたとき,$A=100$ならば,$X_2=[$97$][$98$][$99$]$,$X_3=[$100$][$101$][$102$]$であり,$A=220$ならば,$X_2=[$103$][$104$][$105$]$,$X_3=[$106$][$107$][$108$]$である.
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
スポンサーリンク

「お金」とは・・・

 まだこのタグの説明は執筆されていません。