大阪市立大学
2015年 文系 第2問
2
2
$\mathrm{O}$を原点とする座標空間において四面体$\mathrm{OABC}$を考える.$\triangle \mathrm{ABC}$の重心を$\mathrm{O}^\prime$,$\triangle \mathrm{OBC}$の重心を$\mathrm{A}^\prime$,$\triangle \mathrm{OCA}$の重心を$\mathrm{B}^\prime$,$\triangle \mathrm{OAB}$の重心を$\mathrm{C}^\prime$とする.次の問いに答えよ.
(1) $2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}$は平行であることを示せ.
(2) $|\overrightarrow{\mathrm{OA}}|$と$|\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}|$の比を求めよ.
(3) $\triangle \mathrm{OAB}$と$\triangle \mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime$は相似であることを示せ.
(4) $\mathrm{A}$が$\mathrm{P}(1,\ 0,\ 0)$と$\mathrm{Q}(0,\ 2,\ 0)$を結ぶ線分の中点,$\mathrm{B}$が$\mathrm{Q}$と$\mathrm{R}(0,\ 0,\ 3)$を結ぶ線分の中点,$\mathrm{C}$が$\mathrm{R}$と$\mathrm{P}$を結ぶ線分の中点であるとき,四面体$\mathrm{OABC}$の体積$V$と四面体$\mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$の体積$V^\prime$を求めよ.
(1) $2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}$は平行であることを示せ.
(2) $|\overrightarrow{\mathrm{OA}}|$と$|\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}|$の比を求めよ.
(3) $\triangle \mathrm{OAB}$と$\triangle \mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime$は相似であることを示せ.
(4) $\mathrm{A}$が$\mathrm{P}(1,\ 0,\ 0)$と$\mathrm{Q}(0,\ 2,\ 0)$を結ぶ線分の中点,$\mathrm{B}$が$\mathrm{Q}$と$\mathrm{R}(0,\ 0,\ 3)$を結ぶ線分の中点,$\mathrm{C}$が$\mathrm{R}$と$\mathrm{P}$を結ぶ線分の中点であるとき,四面体$\mathrm{OABC}$の体積$V$と四面体$\mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$の体積$V^\prime$を求めよ.
類題(関連度順)
コメント(0件)
現在この問題に関するコメントはありません。
書き込むにはログインが必要です。