

2011年 理学部(数) 第2問

 $2 \mid$ 自然数 a, b に対して, a = bq + r, $0 \le r \le b - 1$ を満たす整数 q, r がただ 1 組存在する. このとき q は a を b で割った商, r は a を b で割った余りという。自然数 a_0 , a_1 が与えられたとき, 数列 $\{a_n\}$, $\{q_n\}$ は次の 性質を満たすものとする.

(i) q_n は a_{n-1} を a_n で割った商

(ii)
$$\begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_n \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}$$

ただし、 $a_{N+1}=0$ となる自然数 N が存在すれば、n>N に対して q_n および a_{n+1} は定義しない。このとき、 次の問いに答えよ.

- (1) $a_{N+1} = 0$ となる自然数 N が存在することを証明せよ.
- (2) $a_N = aa_0 + ba_1$ を満たす整数 a, b が存在することを証明せよ.
- (3) a_N は a_0 と a_1 の最大公約数であることを証明せよ.