大阪大学
2016年 理系 第5問
5
5
円上の$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は反時計回りにこの順に並び,円周を$5$等分している.$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$を頂点とする正五角形を$\mathrm{R}_1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CD}}=\overrightarrow{c}$とおき,$\overrightarrow{a}$の大きさを$x$とする.
(1) $\overrightarrow{\mathrm{AC}}$の大きさを$y$とするとき,$x^2=y(y-x)$がなりたつことを示せ.
(2) $\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(3) $\mathrm{R}_1$の対角線の交点として得られる$\mathrm{R}_1$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_2$とする.$\mathrm{R}_2$の一辺の長さを$x$を用いて表せ.
(4) $n=1,\ 2,\ 3,\ \cdots$に対して,$\mathrm{R}_n$の対角線の交点として得られる$\mathrm{R}_n$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_{n+1}$とし,$\mathrm{R}_n$の面積を$S_n$とする. \[ \lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^n (-1)^{k+1}S_k \] を求めよ. \imgc{504_1065_2016_1}
(1) $\overrightarrow{\mathrm{AC}}$の大きさを$y$とするとき,$x^2=y(y-x)$がなりたつことを示せ.
(2) $\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(3) $\mathrm{R}_1$の対角線の交点として得られる$\mathrm{R}_1$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_2$とする.$\mathrm{R}_2$の一辺の長さを$x$を用いて表せ.
(4) $n=1,\ 2,\ 3,\ \cdots$に対して,$\mathrm{R}_n$の対角線の交点として得られる$\mathrm{R}_n$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_{n+1}$とし,$\mathrm{R}_n$の面積を$S_n$とする. \[ \lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^n (-1)^{k+1}S_k \] を求めよ. \imgc{504_1065_2016_1}
類題(関連度順)
コメント(0件)
現在この問題に関するコメントはありません。
書き込むにはログインが必要です。