大阪大学
2016年 文系 第2問
2
2
曲線$\displaystyle C:y=|\displaystyle\frac{1|{2}x^2-6}-2x$を考える.
(1) $C$と直線$L:y=-x+t$が異なる$4$点で交わるような$t$の値の範囲を求めよ.
(2) $C$と$L$が異なる$4$点で交わるとし,その交点を$x$座標が小さいものから順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$とするとき, \[ \frac{|\overrightarrow{\mathrm{P|_1 \mathrm{P}_2}}+|\overrightarrow{\mathrm{P|_3 \mathrm{P}_4}}}{|\overrightarrow{\mathrm{P|_2 \mathrm{P}_3}}}=4 \] となるような$t$の値を求めよ.
(3) $t$が$(2)$の値をとるとき,$C$と線分$\mathrm{P}_2 \mathrm{P}_3$で囲まれる図形の面積を求めよ.
(1) $C$と直線$L:y=-x+t$が異なる$4$点で交わるような$t$の値の範囲を求めよ.
(2) $C$と$L$が異なる$4$点で交わるとし,その交点を$x$座標が小さいものから順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$とするとき, \[ \frac{|\overrightarrow{\mathrm{P|_1 \mathrm{P}_2}}+|\overrightarrow{\mathrm{P|_3 \mathrm{P}_4}}}{|\overrightarrow{\mathrm{P|_2 \mathrm{P}_3}}}=4 \] となるような$t$の値を求めよ.
(3) $t$が$(2)$の値をとるとき,$C$と線分$\mathrm{P}_2 \mathrm{P}_3$で囲まれる図形の面積を求めよ.
類題(関連度順)
コメント(0件)
現在この問題に関するコメントはありません。
書き込むにはログインが必要です。