日本医科大学
2016年 医学部 第1問

スポンサーリンク
1
次の各問いに答えよ.(1)円に内接する四角形ABCDにおいて,AB=1+√3,BC=CD,DA=2,また∠DAB={60}°である.四角形ABCDの対角線の交点をP,∠BCDの二等分線と辺ABとの交点をQ,BDとCQの交点をRとするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.(i)辺BDの長さを求めよ.(ii)∠ABDの大きさを求めよ.(iii)辺BPの長さを求めよ.\mon[\tokeishi]三角形PQRの内接円の半径を求めよ.(2)自然数nに対して,nを3で割った余りをa_n,n^2を3で割った余りをb_nとするとき,以下の各問いに答えよ.(i)Σ_{n=1}^{2016}(a_n+b_n)の値を求めよ.(ii)Σ_{n=1}^m(a_{n+2}+b_{n+1}+2a_n)=2016を満たす自然数mの値を求めよ.(3)Oを原点とする座標平面上に,次のような双曲線Cと直線ℓ_k(kは実数の定数)が与えられているとき,以下の各問いに答えよ.C:\frac{x^2}{4}-\frac{y^2}{3}=-1\qquadℓ_k:3x-4y+k=0(i)Cとℓ_kが接するようなkの値を求めよ.(ii)C上の点と直線ℓ_0:3x-4y=0の距離の最小値を求めよ.
1
次の各問いに答えよ.
(1) 円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.
(ⅰ) 辺$\mathrm{BD}$の長さを求めよ.
(ⅱ) $\angle \mathrm{ABD}$の大きさを求めよ.
(ⅲ) 辺$\mathrm{BP}$の長さを求めよ. [$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.
(2) 自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.
(ⅰ) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ⅱ) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.
(3) $\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ. \[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]
(ⅰ) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ⅱ) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
問題PDF つぶやく 印刷 印刷
試験前で混乱するので解答のご要望は締め切りました。なお、現時点で解答がついていない問題は解答は来年度以降になります。すべてのご要望に答えられずご迷惑をおかけします。

類題(関連度順)


コメント(0件)

現在この問題に関するコメントはありません。


書き込むにはログインが必要です。

詳細情報

大学(出題年) 日本医科大学(2016)
文理 理系
大問 1
単元 図形と計量(数学I)
タグ 内接四角形根号角度対角線交点二等分線分母有理化
難易度 未設定

この問題をチェックした人はこんな問題もチェックしています


この単元の伝説の良問

倉敷芸術科学大学(2010) 文系 第5問

演習としての評価:★★★★☆
難易度:★★☆☆☆

千葉大学(2010) 理系 第3問

演習としての評価:★★★★☆
難易度:★★☆☆☆

奈良女子大学(2012) 理系 第1問

演習としての評価:★★★★☆
難易度:★★☆☆☆