上智大学
2011年 文系 第2問

スポンサーリンク
2
aを実数とし,2つの放物線C:y=-x^2+4,C_a:y=(x-a)^2+aを考える.(1)CとC_aが異なる2点で交わるための条件は,-a^2+[サ]a+[シ]>0であり,したがって[ス]<a<[セ]である.このときb=\sqrt{-a^2+[サ]a+[シ]}とおくと,(a,b)は中心が([ソ],[タ])で,半径が[チ]の円周上にある.(2)[ス]<a<[セ]のとき,CとC_aとの交点のx座標をα,β(α<β)とすると,\setstretch{2}\begin{array}{rcl}α+β&=&[ツ]a+[テ]\2αβ&=&[ト]a^2+[ナ]a+[ニ]\β-α&=&[ヌ]b+[ネ]\end{array}\setstretch{1.3}である.(3)CとC_aにより囲まれた図形の面積は,a=[ノ]のときに最大値[ハ]をとる.
2
$a$を実数とし,$2$つの放物線 \[ C:y=-x^2+4,\quad C_a:y=(x-a)^2+a \] を考える.
(1) $C$と$C_a$が異なる$2$点で交わるための条件は, \[ -a^2+\fbox{サ}a+\fbox{シ}>0 \] であり,したがって \[ \fbox{ス}<a<\fbox{セ} \] である.このとき \[ b=\sqrt{-a^2+\fbox{サ}a+\fbox{シ}} \] とおくと,$(a,\ b)$は中心が$(\fbox{ソ},\ \fbox{タ})$で,半径が$\fbox{チ}$の円周上にある.
(2) $\fbox{ス}<a<\fbox{セ}$のとき,$C$と$C_a$との交点の$x$座標を$\alpha,\ \beta \ \ (\alpha<\beta)$とすると, \setstretch{2} \[ \begin{array}{rcl} \alpha+\beta &=& \fbox{ツ}a+\fbox{テ} \\ 2\alpha\beta &=& \fbox{ト}a^2+\fbox{ナ}a+\fbox{ニ} \\ \beta-\alpha &=& \fbox{ヌ}b+\fbox{ネ} \end{array} \] \setstretch{1.3} である.
(3) $C$と$C_a$により囲まれた図形の面積は,$a=\fbox{ノ}$のときに最大値$\fbox{ハ}$をとる.
問題PDF つぶやく 印刷 印刷
試験前で混乱するので解答のご要望は締め切りました。なお、現時点で解答がついていない問題は解答は来年度以降になります。すべてのご要望に答えられずご迷惑をおかけします。

コメント(0件)

現在この問題に関するコメントはありません。


書き込むにはログインが必要です。

詳細情報

大学(出題年) 上智大学(2011)
文理 文系
大問 2
単元 ()
タグ 空欄補充実数放物線x^2条件根号中心半径円周交点
難易度 未設定

この問題をチェックした人はこんな問題もチェックしています

上智大学(2015) 文系 第3問

演習としての評価:未設定
難易度:未設定

上智大学(2015) 文系 第1問

演習としての評価:未設定
難易度:未設定

上智大学(2015) 文系 第2問

演習としての評価:未設定
難易度:未設定


この単元の伝説の良問