広島大学
2012年 理系 第1問

スポンサーリンク
1
行列A=\biggl(\begin{array}{cc}a&b\\c&d\end{array}\biggr)の表す1次変換によって,2点P(1,1),Q(2,2)は連立不等式1≦x≦2,1≦y≦2の表す領域内の点P´,Q´にそれぞれ移されるものとする.ただし,a,b,c,dは正の実数でa>cを満たすとする.次の問いに答えよ.(1)a+b=1およびc+d=1が成り立つことを証明せよ.(2)4点O(0,0),R(a,c),S(a+b,c+d),T(b,d)を頂点とする平行四辺形ORSTの面積をpとするとき,次の式が成り立つことを証明せよ.A\biggl(\begin{array}{c}b\\-c\end{array}\biggr)=p\biggl(\begin{array}{c}b\\-c\end{array}\biggr)(3)自然数nに対して,a_n,b_n,c_n,d_nを\biggl(\begin{array}{cc}a_n&b_n\\c_n&d_n\end{array}\biggr)=A^n\biggl(\begin{array}{cc}1&b\\1&-c\end{array}\biggr)で定める.このときa_n,b_n,c_n,d_nをb,c,nおよび(2)のpを用いて表せ.(4)A^3=1/27\biggl(\begin{array}{cc}14&13\\13&14\end{array}\biggr)となるようにAを定めよ.
1
行列$A=\biggl( \begin{array}{cc} a & b \\ c & d \end{array} \biggr)$の表す$1$次変換によって,$2$点$\mathrm{P}(1,\ 1)$,$\mathrm{Q}(2,\ 2)$は連立不等式$1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2$の表す領域内の点$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$にそれぞれ移されるものとする.ただし,$a,\ b,\ c,\ d$は正の実数で$a>c$を満たすとする.次の問いに答えよ.
(1) $a+b=1$および$c+d=1$が成り立つことを証明せよ.
(2) $4$点$\mathrm{O}(0,\ 0)$,$\mathrm{R}(a,\ c)$,$\mathrm{S}(a+b,\ c+d)$,$\mathrm{T}(b,\ d)$を頂点とする平行四辺形$\mathrm{ORST}$の面積を$p$とするとき,次の式が成り立つことを証明せよ. \[ A \biggl( \begin{array}{c} b \\ -c \end{array} \biggr) = p \biggl( \begin{array}{c} b \\ -c \end{array} \biggr) \]
(3) 自然数$n$に対して,$a_n,\ b_n,\ c_n,\ d_n$を \[ \biggl( \begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array} \biggr) = A^n \biggl( \begin{array}{cc} 1 & b \\ 1 & -c \end{array} \biggr) \] で定める.このとき$a_n,\ b_n,\ c_n,\ d_n$を$b,\ c,\ n$および(2)の$p$を用いて表せ.
(4) $\displaystyle A^3=\frac{1}{27} \biggl( \begin{array}{cc} 14 & 13 \\ 13 & 14 \end{array} \biggr)$となるように$A$を定めよ.
問題PDF つぶやく 印刷 印刷
試験前で混乱するので解答のご要望は締め切りました。なお、現時点で解答がついていない問題は解答は来年度以降になります。すべてのご要望に答えられずご迷惑をおかけします。

類題(関連度順)

コメント(0件)

現在この問題に関するコメントはありません。


書き込むにはログインが必要です。

詳細情報

大学(出題年) 広島大学(2012)
文理 理系
大問 1
単元 行列とその応用(数学C)
タグ 証明行列変換連立不等式不等号領域内導関数実数頂点平行四辺形
難易度 未設定

この問題をチェックした人はこんな問題もチェックしています

広島大学(2014) 理系 第1問

演習としての評価:未設定
難易度:未設定

広島大学(2013) 理系 第1問

演習としての評価:未設定
難易度:未設定

広島大学(2011) 理系 第1問

演習としての評価:未設定
難易度:未設定


この単元の伝説の良問

首都大学東京(2010) 理系 第1問

演習としての評価:★★★★☆
難易度:★★★☆☆

長岡技術科学大学(2012) 理系 第1問

演習としての評価:★★★★☆
難易度:★☆☆☆☆

豊橋技術科学大学(2013) 理系 第1問

演習としての評価:★★★★☆
難易度:★★☆☆☆