

2016年第2問

- ② 原点をOとする座標平面上に、異なる 3 点 A,B,P がある。それぞれの位置ベクトルを \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{p} と し, $\overrightarrow{p} = s\overrightarrow{a} + t\overrightarrow{b}$ および 2s + t = 2 を満たすとする。ただし,s > 0,t > 0 とする。また \overrightarrow{a} と \overrightarrow{b} がなす角度を θ $\left(0 < \theta < \frac{\pi}{2}\right)$ とする。このとき,以下の問いに答えよ。
- (1) 点 C の位置ベクトル \vec{c} が $\vec{c}=2\vec{b}$ を満たすとき,点 P は直線 AC 上にあることを示せ.
- (2) 点 P を中心とする円が直線 OA,OB に接しているとする. $\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} = 3$, $\begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix} = 1$ とするとき,s と t を求めよ.
- (3) (2) のとき、直線 OA に関して、点 P と対称な点 Q の位置ベクトルを \overrightarrow{a} , \overrightarrow{b} , θ で表せ.